DOE/SNF/REP-090
Rev. 0

United States Department of Energy

National Spent Nuclear Fuel Program

Packaging Strategies for Criticality Safety for “Other”
DOE Fuels in a Repository

June 2004

U.S. Department of Energy
Assistant Secretary for Environmental Management
Office of Nuclear Material and Spent Fuel



This document was developed and is controlled in accordance with NSNFP procedures.
Unless noted otherwise, information must be evaluated for adequacy relative to its specific
use if relied on to support design or decisions important to safety or waste isolation.




DOE/SNF/REP-090 June 2004
Revision 0 Page 1 0of 122

DOE/SNF/REP-090
Rev. 0

Packaging Strategies for Criticality Safety for “Other”
DOE Fuels in a Repository

June 2004
WBS No. A.1.01.00.03.0B

Idaho National Engineering and Environmental Laboratory
Idaho Falls, Idaho 83415

Prepared for the
U.S. Department of Energy
Assistant Secretary for Environmental Management
Under DOE Idaho Operations Office
Contract DE-AC07-991D13727



DOE/SNF/REP-090 June 2004
Revision 0 Page 2 0f 122

REVISION LOG

Revision DAR No. Issue Date

0 NSNF-486 June 24,2004



DOE/SNF/REP-090
Revision 0

June 2004
Page 3 0of 122

Packaging Strategies for Criticality Safety for “Other”

DOE Fuels in a Repository

June 2004
L. L. Taylor
(Signature)
National Spent Nuclear Fuel Program
Document Preparer
H. H. Loo
(Signature)
National Spent Nuclear Fuel Program
Technical Lead
N. S. MacKay
(Signature)

National Spent Nuclear Fuel Program
Program Support Organization Quality Engineer

P. D. Wheatley

(Signature)
National Spent Nuclear Fuel Program
Program Support Organization Manager

Date:

Date:

Date:

Date:




DOE/SNF/REP-090 June 2004
Revision 0 Page 4 0of 122




DOE/SNF/REP-090 June 2004
Revision 0 Page 5 0of 122

ABSTRACT

Since 1998, there has been an ongoing effort to gain acceptance of
U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in the
national repository. To accomplish this goal, the fuel matrix was used as a
discriminating feature to segregate fuels into nine distinct groups. From each of
those groups, a characteristic fuel was selected and analyzed for criticality safety
based on a proposed packaging strategy. This report identifies and quantifies the
important criticality parameters for the canisterized fuels within each criticality
group to: (1) demonstrate how the “other” fuels in the group are bounded by the
baseline calculations or (2) allow identification of individual type fuels that
might require special analysis and packaging.



DOE/SNF/REP-090 June 2004
Revision 0 Page 6 0f 122




DOE/SNF/REP-090

Revision 0

June 2004
Page 7 0of 122

SUMMARY

The U.S. Department of Energy (DOE) spent nuclear fuel encompasses a
wide range of configurations. Dimensions can range from fractional inches to
feet. Various cladding materials include stainless steel, aluminum, zirconium,
and graphite. Fissile loads can vary from gram to kilogram quantities in a single
fuel handling unit (FHU). Fissile isotope species include *’U, *°U, and **Pu.
Enrichment values span a range for depleted uranium up to 100%. Fuel matrix
material includes metals, oxides, hydrides, carbides, and others. This wide
variety of fuel properties complicates the strategy needed to provide suitable
packaging.

This report provides options for strategies that might be considered with
regard to packaging DOE spent nuclear fuel for acceptance by the repository.
Perhaps just as important, what this report does not do is attempt to qualify any
specific design or prescribe a given packaging for all the “other” DOE spent
nuclear fuel. The spent fuel database contains much of the information
(dimensions, fissile per FHU) that can be used to develop proposed packaging
strategies. Ultimately, much of the underlying information in support of the spent
fuel database will be needed to support detailed criticality calculations as each
particular fuel is moved out of storage and into canisters.

This report includes many of the details associated with the set of baseline
fuels about which criticality analyses have been performed. These analyses have
been done in an attempt to establish packaging conditions that must be met to
ensure criticality safety for all conceivable repository conditions. This report also
establishes the conditions generally associated with the criticality analyses done
for the baseline fuels, then attempts to demonstrate how all the other fuels within
a given criticality category are bounded by the baseline fuel calculations.
Comparisons are available for parameters (on a per canister basis) such as linear
loading (g/cm), total fissile (kg), fissile isotope, enrichment (%), atom-densities
(atoms/b-cm), moderator/fissile ratio (H/X), and poison/fissile ratio (Gd/X where
appropriate). Such a comparison does not automatically qualify the other fuels
for packaging. They are all expected to undergo an independent criticality
analysis at the time of packaging for both intact/dry and intact/flooded
configurations.

Spent nuclear fuel disposal in a standard canister may involve packaging
fuel using a basket (with or without poisoning) to facilitate loading and enforce
fissile load limits, or may even allow packaging without a basket. For those few
cases identified in this report where fissile loads in a canister exceed the baseline
fuels analyzed, derating the canister by blinding off basket positions represents
the most viable option.

The issue of assembling/loading fuels within a basket has several
implications. In cases where baskets are continuous for the full length of the
canister, the basket may be preinstalled in the canister prior to movement of the
canister into the hot cell. Other baskets that can be stacked inside the canister
would be loaded with fuels in the hot cell and then be loaded in the canisters.
When poisons are required in a canister, current preferences would incorporate
the poisons in the basket structure itself or preloading beads such as for the Fermi
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basket. Other poisoning requirements may require addition of some type of
poisoned bead material; this form of poisoning and its feasibility of installation
remains to be developed.

There is an expectation of vertical loading of all baskets and fuels within a
canister. However, none of the features that enable vertical movement of fuels or
baskets, e.g., grapples, lifting bails, positioning aids, have been developed at this
time. The stacked baskets necessarily have a bottom plate (Type 1a, Type 4,
Type 5) and may have a surrounding sleeve (Type 1a) to help constrain the
vertically oriented fuels.

Because of the processes involved in drying the fuels to some established
standard, loading and then sealing the canister dictates only a selected number of
sites will be qualified to accomplish this work. Remote capabilities are needed
beyond just picking up fuel pieces and placing them in a basket or canister. Some
of these capabilities must include:

o Vertical heights to deal with 15-ft fuels going into 15-ft canisters
o Cranes

o Manipulators

o Welding—remote shield plugs

o Drying fuel prior to loading in a canister; special cases may allow drying after
packaging in a canister.

Many fuels by themselves will result in only a partial canister-fill. So,
other fuels within the same category and those that fall within the space
constraints of a basket position might be used to fill those basket positions. This
generates what might be termed a “hybrid” fuel load that might be qualified with
a detailed criticality analysis for the intact fuel/basket combinations at the time of
loading. There is one example of hybrid packaging presented in Appendix A, but
it should not be taken as a prescriptive approach that only these fuels may be
packaged together in this particular configuration.

Basket designs perform several functions, but surprisingly the primary one
is not to ensure criticality safety by geometry. Basket designs enforce an initial
geometry on which to perform baseline calculations for intact criticality
configurations. They also enforce a fissile load limit for a canister. The
information contained in this report might only be considered as a conceptual
design, promoting the strategy that offers an approach to packaging for
minimizing criticality risk for the postclosure case associated with repository
disposal.

Comparisons against baseline (and often times optimal) conditions are
provided for each baseline fuel and each other fuel for which there is information
to provide a conceptual basket or canister design. In the case of calculated H/X
ratios, they reflect an idealized quantity based on an assumed uniformity of
distribution for the fissile material and a water fill of the calculated void space
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within any basket/canister configuration. Where a Type 1a basket might be used
with a Group 8 fuel, the baseline fuel for comparison uses the baseline fissile
concentration to compare the Type 1a fuel basket against the proposed Group 8
fissile load.

Use of poisoned baskets for fuel packages with much less than baseline
fissile loads for that particular basket have not determined whether poisons are
required for those lowered fissile quantities. An example with TRIGA fuel:
standard fuels have a much higher ***U component in the fuel matrix, which acts
as a neutron absorber. These standard fuels are demonstrably less reactive than
the 70%-enriched FLIP fuels, so poisoning requirements should be less.
However, no analysis has examined these fuels against a baseline configuration
with five times the fissile loading or unit length of the canister. Many possible
fuel loads for a given basket are <30% of the baseline configuration that is
supported by a qualified analysis. This may be the result of decreased fissile load
per FHU and lower enrichment. At some to-be-determined threshold, there may
be a resultant fissile load below which no poisoning is required in the canister.
This lower threshold has yet to be determined. The alternative approach would be
to include poisoning in all baskets using the C-4 + Gd alloy.

This report does not attempt to address hybrid loads between fuel groups
in the same canister, although there may only be a fractional canister’s worth of
fuel to fill the various basket positions.

Comparisons of H/X ratios in this report are calculated in the following
manner. Hydrogen mass is based on the weight fraction of water that can fill the
calculated void volume inside a filled canister. That calculation is based on the
initial void inside the canister minus the displaced volume provided by the basket
and minus the displaced volume created with the fuel. Fuel volume was
calculated by the cross section of the fuel shape times its length. Void space
within the fuel was calculated in some cases. In most cases, pin (Fast Flux Test
Facility) or plate assemblies (Shippingport Pressurized Water Reactor) assumed a
50% void space. For bare pins (TRIGA), there was an assumed 2% void space.

Other fuel analyses need to prove (basically) that the linear loading, total
fissile per canister, enrichment, atom-densities, and H/X ratios for any package
other than baseline fuels are either less than or (in the case of H/X ratio) moving
away from a more reactive condition.
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FOREWORD

The premise of any U.S. Department of Energy (DOE) spent nuclear fuel
(SNF) canister packaging for criticality concerns has evolved from the approach
adopted in the Disposal Criticality Analysis Methodology Topical Report. Within
these guidelines, there was a need to establish criteria for fissile loadings and
accident scenarios consistent with the various types of fuels within the DOE fuel
inventories.

There is an important distinction to make between criticality safety in the
preclosure environment versus criticality risk under the regulatory control in a
postclosure environment. Criticality safety rules for operational facilities that
must deal with movement of enriched fissile materials rely on imposition of rules
that require failure of controls based on occurrence of two independent events
before a criticality can occur. The regulatory guidance of 10 CFR 63 provides a
risk-based approach to criticality.

The approach taken in any of the proposed fuel loads for the DOE standard
canisters was to maximize the fissile load in a canister while being able to
minimize criticality risk for any individual canister. With this condition
established, the criticality analyses focused on horizontal orientation of
individual SNF canisters within a codisposal waste package. All the criticality
analyses included calculations that provided a calculated k. for fuels and baskets
(if any) for intact conditions, both dry and wet. These intact analyses would not
be specific to any particular package orientation, but would certainly satisfy the
guidelines established for criticality safety in the preclosure environment for any
intact fuel/basket configurations. Subsequent analyses should address all
conceivable conditions that could be expected within the waste package for
postclosure. The goal is identification of the most reactive configuration that
could be achieved through the addition of water to both the waste package and
the SNF canister. Any such analyses should account for various degrees of
degradation and radial redistribution of fuel both within the SNF canister and
when mixed with the degradation products of the high-level waste glass within
the waste package. The one obvious exclusion to any of these analyses was the
absence of a mechanism to promote axial redistribution, i.e., vertical canister
orientation of fissile material for any of the degradation scenarios that included
water.

Characteristic conditions of the DOE fuels were considered for any
proposed fuel loading inside a single canister based on (a) total fissile mass,
(b) linear loading (mass per unit length), (¢) enrichment of the fissile isotopic
species in the fuel, and (d) H/X ratio. On these bases, analyses established a
critical limit of a calculated k¢ +26<0.93 for highly enriched fuels with suitable
supporting benchmark values, and a k. +20 <0.92 for fuels with benchmarks
further from the range of applicability. Fuels with commercial enrichments
(<6.0%) used a ke +20 <0.97.

To these ends, some of the proposed fissile loads were “volume limited”
with respect to the fissile mass that could be installed in a canister such that no
amount of fuel or conditions within the confines of a standard canister would
exceed the critical limit for DOE fuel. Other fuel, such as Shippingport
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Pressurized Water Reactor, was so robust in construction that no degradation and
no reconfiguration could occur. Postulated degradation conditions for some of
the canisters revealed calculated k.gs in excess of the proposed critical limit.
These conditions were generally addressed through the addition of gadolinium as
a neutron poison. Consequential calculations then addressed the solubility,
retention, and distribution of this gadolinium as a poison.

Numerical values found predominantly in Appendix A of this document
used information contained within the SNF Database, Version 5.0.1. The
information for the baseline fuel analyses used values from separate documents
that may have also been used to populate the database fields. The important
distinction is that this report simply provides a basis for comparing other fuels in
the DOE inventory against baseline calculations. No fuel packages will be
qualified for the repository on the basis of these or any other calculations until
there is an approved set of canister/basket designs with supporting calculations
using accepted dimensions, confirmation of contents, and calculations for
criticality, thermal, and radiation shielding.
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ACRONYMS

ASTM American Society for Testing and Materials

ATR Advanced Test Reactor

BOL beginning-of-life

DOE U.S. Department of Energy

FFTF Fast Flux Test Facility

FHU fuel handling unit

FLIP Fuel Life Improvement Program

Gd/X gadolinium to fissile ratio

H/X hydrogen/fissile ratio

HEU highly enriched uranium (>20% enrichment)

HFIR High Flux Isotope Reactor

HIC high-integrity canister

HLW high-level waste

LEU low-enriched uranium (<5% enrichment)

LWBR light water breeder reactor

MCNP Monte Carlo N-Particle (computer software code)

MCO multi-canister overpack (specific to N-reactor fuels)

MEU medium-enriched uranium (>5% and <20% enrichment)

MIT Massachusetts Institute of Technology

MOX mixed oxide (fuel)

NSNFP National Spent Nuclear Fuel Program

ORR Oak Ridge Research

PWR pressurized water reactor

SDC standard disposal canister

SNF spent nuclear fuel
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TBD to be determined

TMI Three Mile Island Unit 2

TRIGA Training Research Isotopes General Atomics

U total uranium

X fissile species (233 U, ®u, ® 9Pu)
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Atom-density

Axial reconfiguration

Basket

Benchmarks

Boron

Burnup

Canister

Codisposal

Critical limit

Criticality

Depleted uranium

Effective enrichment

Epithermal neutrons

EQ3/6

Fuel handling unit

NOMENCLATURE

A measure of the fissile atom concentration used in Monte Carlo N-Particle
modeling, usually expressed in atoms/barn-cm.

A condition that would assume preferential migration of fissile material to a zone
that results in an abnormal increase in concentration. Such a condition could
occur if the canister were turned on end and if degraded materials were collected
in one end of the canister.

Device to facilitate spent nuclear fuel loading in a canister, enforce predictable
geometry inside the spent nuclear fuel canister, and provide a means of
incorporating neutron absorber material if necessary. The basket may be
segmented to allow stacking.

A measured set of specific conditions used to establish fissile concentrations (or
atom-densities) needed to actually achieve criticality.

"B cross-section of 3,840 barns but has a natural isotopic occurrence of only
19.9%.

A measure of the percentage of atoms consumed from a known mass of heavy
metal.

A sealed container used for spent nuclear fuel disposal packaging.
(a.k.a. SNF canister or SDC)

The concept of combining both DOE spent nuclear fuel and high-level waste in a
single waste disposal package.

Defines the maximum allowable k. for a single canister configuration
([kegr <0.93 for highly enriched uranium] or [keg <0.97 for low-enriched
uranium]).

The chain reaction where the number of neutrons produced in a given generation
equals the number lost by fission, absorption, or leakage.

Uranium that has had as much as 50% of its original fissile concentration of U
extracted during enrichment operations.

U233 + U235 + Pu239-241 y
Total U + Total Pu

100.

2

Neutrons with energies greater than thermal up to 10 keV.

Computer software code used to calculate chemical equilibrium for degradation
scenarios.

Refers to an individual piece of spent nuclear fuel, whether a rod, plate, can, pin,
or assembly.
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Gadolinium Two predominant isotope species for neutron capture (Gd-155/61,000 barns
thermal; 1540 barns resonance [14.8% abundance] and Gd-157/255,000 barns
thermal; 800 barns resonance [15.7% abundance]).

Insert May be used inside a spent nuclear fuel canister in lieu of a basket. Inserts will be
continuous for the inside length of the canister.

keyr Effective multiplication factor that expresses the ratio of the number of neutrons

Linear loading

Metric tonnes heavy

metal

Multi-canister
overpack

Natural uranium
Neutron absorber
Poison

Radial
reconfiguration

Spent nuclear
fuel canister

(or standard
disposal canister)
System reactivity

Thermal neutrons

Void volume

resulting from fission in each generation to the total number lost by both
absorption and leakage in the preceding generation.

Concept of fissile material distribution in horizontally oriented packages.

Defined as the sum of the masses for all thorium, uranium, and plutonium and
reported in metric tonnes.

A standardized canister for packaging DOE spent nuclear fuel (used exclusively
at the Hanford site).

Contains 0.7205 atom% **°U; the usable fissile material.
Material with a high capture cross section for neutrons.

Neutron absorbers that are installed inside the spent nuclear fuel canister in
various forms.

A degraded fuel condition that addresses both expansion and contraction of the
fissile materials about the centerline of a horizontally oriented spent nuclear fuel

canister; made with the assumption of a uniform linear loading.

An engineered container that houses and seals spent nuclear fuel against
radionuclide leakage out/water moderation in.

As measured by the calculated k.
Average or monoenergetic neutrons of 0.0253 electron volts.

The calculated empty volume inside a spent nuclear fuel canister after accounting
for displacement caused by the basket and fuel material.
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Packaging Strategies for Criticality Safety for “Other”
DOE Fuels in a Repository

1. PURPOSE

Packaging these “other” fuels is based on the analyses done to date on nine specific fuel types
that were intended to envelop anticipated worst-case conditions in a postclosure repository. The
outgrowth of such an analysis is a set of criticality calculations suitable for preliminary screening for
criticality risk in single canister preclosure scenarios. None of the analyses done to date attempt to answer
the criticality safety questions related to close-packed array packaging in transport casks or prove safety
in any interim storage array.

This report identifies how the other fuels might use basket designs developed out of the analyses
performed for the nine fuel groups. This report also identifies (in Appendix A) how these other fuels
could be bounded by the baseline fuels.

1.1 Quality Assurance

This document was developed and is controlled in accordance with National Spent Nuclear Fuel
Program (NSNFP) procedures. Unless noted otherwise, information must be evaluated for adequacy
relative to its specific use if relied on to support design or decisions important to safety or waste isolation.

The NSNFP procedures applied to this activity implement DOE/RW-0333P, Quality Assurance
Requirements and Description, and are part of the NSNFP Quality Assurance Program. The NSNFP
Quality Assurance Program has been assessed and accepted by representatives of the Office of Quality
Assurance with the Office of Civilian Radioactive Waste Management for the work scope of the NSNFP.
The NSNFP work scope extends to the work represented in this report.

The principal NSNFP procedures applied to this activity included the following:

. NSNFP Program Management Procedure (PMP) 6.01, “Review and Approval of NSNFP Internal
Documents”

. NSNFP PMP 6.03, “Managing Document Control and Distribution”

. NSNFP Program Support Organization (PSO) 3.04, “Engineering Documentation.”

1.2 Strategy

The goal of packaging U.S. Department of Energy (DOE) spent nuclear fuel (SNF) has been to
minimize the ultimate number of SNF canisters generated for repository disposal. Conversely, this goal is
achieved only through maximizing the fissile quantities that can be loaded in any canister that is
consistent with an ability to ensure an acceptable criticality risk for the licensing basis of the repository
(10,000 years) and preferably beyond.

The criticality analyses done to date for DOE fuels have followed a set of criteria established in a
Disposal Criticality Analysis Methodology Topical Report' and for the same regulatory bases. While this
methodology report focuses specifically on commercial fuel, the criteria are specifically applicable to
DOE SNF: “The methodology approach outlined... will be used for the following waste forms:
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commercial SNF, DOE SNF, and... with the exception of the determination of isotopic inventories and
burnup credit which is inappropriate for DOE SNF...” DOE fuel in general has never sought burnup
credits. Indeed, where DOE fuel had a known potential for ingrowth of fissile isotopes, added
conservatisms for fissile loadings in certain fuels were incorporated into those criticality analyses.

The strategy for DOE SNF has been to analyze a select number of fuels with their associated
parameters (fissile mass, enrichment, fissile isotope, linear loading per canister, and hydrogen/fissile
[H/X] ratio) as a baseline set of conditions for single canisters. These packages were then analyzed under
all conceivable conditions, e.g., dry/intact, fully flooded/intact, flooded/fuel degraded, flooded/basket
degraded, and flooded/all degraded. The results of each analysis were used to identify any poisoning
requirements that are based on the most reactive configuration identified.

Ultimately, those parameters associated with criticality risk for the other fuel packaging need to
demonstrate that the values are some percentage of the baseline fuel such that decreased reactivity can be
demonstrated for intact fuels/intact basket relative to baseline fuel. These are necessary calculations for
all DOE fuel at the time of packaging, because any movement of fuel into a new configuration must be
analyzed for criticality risk. The assumption has always been analyzing single canisters of fuel, because
neutronic isolation from other canisters is considered the province of the packaging/storage facility and
the designer of the transport cask.

A major premise of the nine, detailed analyses has focused on the postclosure conditions expected
for any packaged DOE-owned SNF. To achieve this goal, a representative fuel was selected from each of
nine distinct fuel groups as representative of an expected packaging scheme that would encompass all the
parameters important to criticality risk. This effort would then identify through analysis a most reactive
package configuration. All criticality analyses started with a conceptual, intact fuel-configuration within a
canister (whether with or without a basket and/or poisons), and a horizontal canister orientation.
Sequential and progressive degradation of canister contents because of the entry of water into a breached
canister examined each proposed canister load for intact, fully flooded conditions. Subsequent
degradation scenarios examined degraded fuel/intact baskets, degraded baskets/intact fuels, and
degradation of all components within both the waste package and the SNF canister. Of the failure modes
analyzed, it was generally the degradation and redistribution of the fissile mass within the SNF canister
that promoted the need to add neutron poisoning in certain packages. There is an inherent assumption
(analyzed with chemical equilibrium via EQ3/6) that addresses the form and retention of any poisons
installed in any canister.

The fact that the baseline analysis looks at intact configurations, both dry and through all degrees
of moderation, suggests there is a bounding case analysis at least for a single canister for any preclosure
event (packaging, storage, transportation). None of the postclosure analyses have addressed a vertical
orientation and degraded fuel conditions. The nine analyses purposefully steered away from vertical
orientation with axial fuel reconfiguration, because with the addition of water moderation, maintaining
the calculated k.¢ below the critical limit could not be ensured. In postclosure, while moderator exclusion
might not be absolutely ensured, once the waste package is placed in a repository drift, there are no
identified mechanisms to promote axial reconfiguration of fissile material within an SNF canister.

Still, many of the calculated values for any SNF packaging scheme will need to be determined for
individual packages at the time of loading. The approach of this document will be the identification of
baseline values of parameters, the control of which is instrumental in satisfying criticality limits. If it can
be shown that the calculated k. is lower than the comparable baseline fuel configuration (intact, both dry
and flooded), that fissile atom-densities for a homogeneous package loading are less than those already
established by the baseline fuel, and that H/X ratios do not favor increased reactivities, then no additional
degradation analyses would be needed to promote acceptance of the canister and its contents into the
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repository. This approach is depicted in Figures 1a and 1b. The figures depict a process used for an initial
determination of which canister/basket configuration might be suitable for the various fuels.

Individual criticality models analyzed at the time of SNF canister loading for both dry and wet
configurations could provide the starting point for criticality analysis of a close-packed array within the
transport cask. The strategy to date has been toward maximizing fissile loading with any given SNF
canister in an attempt to minimize the total SNF canister count. Analysis of baseline fuels has always
been predicated on an ability to demonstrate acceptable criticality risk for any single canister loading
under any conceivable condition. Packaging any SNF canister for interim storage or transport relied
generally on an ability to ensure intact fuel/basket configurations already proven to be critically safe
during the single package analyses. However, both storage and transport of these canisters could be
expected to have to deal with arrays of canisters under a yet-to-be prescribed set of conditions, e.g., how
close the packages are to one another or what degree of moderator exclusion can be ensured in both the
transport cask and individual canisters. For these cases engineered barriers and administrative controls,
for which verification and remediation are possible, were expected to provide the contingencies necessary
to ensure criticality safety during transport.

The strategy of using neutron poisons within any loaded canister is driven by the postclosure
conditions, given an inability to ensure moderator exclusion and degradation of the SNF canister contents
over time. The quantity of poisons used is determined by calculations relative to predicted solubility of
the poison for a wide range of chemical conditions postulated for a breached waste package.

%0 as a neutron capture agent plays an important role in criticality analyses for low-enriched
uranium (LEU) fuel systems and explains why so much more total fissile is needed to achieve criticality.

Criticality analyses have been performed for the nine types of fuels in the criticality grouping,
along with a limited number of incidental analyses for other fuels within a standard canister configuration.
The bibliography near the end of this report lists all the associated criticality analyses done for DOE SNF.
Table 1 provides a summary breakdown of what portion of the DOE fuel inventory can be tied directly to
an existing analysis in support of evaluating the criticality risk of a single canister in a codisposal waste
package (source for MTHM and volumes: SNF Database Version 5.0.1). Ideally, future analyses for the
other unanalyzed fuels can be limited to analyses of only intact fuel configurations inside a standard
canister by demonstrating how the baseline values important to criticality bound the other fuels.

Table 2 provides a summary of those variables calculated in Appendix A that are fixed by the
physical nature of the loaded, baseline canisters. The H/X ratio is more variable depending on the
assumption of percentage of void space within the canister as it might be filled with water.

TRIGA-FLIP fuel (70% enrichment) analysis used 12 poisoned tubes (out of 37) in each basket.
Practical design consideration should poison all basket tubes to avoid any question of whether the
poisoned tubes were even installed or if they were installed in the correct position. TRIGA standard fuel
loaded in the same canister/basket configuration represent some 28.5% of fissile material associated with
a TRIGA-FLIP fuel loading. The same basket-poisoning scheme should be implemented for these
standard fuels in case an inadvertent fuel loading installs a TRIGA-FLIP fuel by mistake. Ideally, it would
make sense to mix FLIP and standard fuels in the same package, thereby providing a derated fissile
loading for all TRIGA fuel canisters. The current split between TRIGA fuels would yield 7 TRIGA-FLIP
canisters versus 62 TRIGA-standard or FFCR (fueled follower control rod) canisters.
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(continued on Figure 1b)

Figure 1a. Methodology for selecting standard disposal canisters.
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(continued from Figure 1a)

Place in
appropriate length
and diameter SDC

Does criticality
analysis indicate need
for poisoning?

Does
physical mass of
loaded canister exceed
weight limit?

No Can poison be
incorporated into a
basket structure?

No
Complete

Can sufficient
poison be incorporated
in basket and
beads?

Can sufficient
poison be incorporated
into beads alone?

No

Does fissile
oading exceed listing for
the fuel group basket design
on analysis summary
worksheet?

Yes

Figure 1b. Methodology for selecting standard disposal canisters.
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Table 1. DOE spent nuclear fuel quantities.

Analyzed” Nonanalyzed"
Vol Vol
Fuel Group MTHM (m’) MTHM (m’)
1—Aluminum
ATR 5.067 62.976 — —
MIT 0.231 1.421 — —
ORR 0.147 0.454 — —
Other — — 11.937 84.368
Subtotal 5.445 64.851 11.937 84.368
% of subtotals 31.3% 43.5% 68.7% 56.5%
2—Uranium metal
N-reactor 2096.202 204.25 — —
Other — — 14.124 3.073
Subtotal 2096.202 204.25 14.124 3.073
% of subtotals 99.3% 98.5% 0.7% 1.5%
3—Mixed oxides
FFTF 10.791 16.782 — —
Other — — 1.56155 2.022
Subtotal 10.791 16.782 1.56155 2.022
% of subtotals 87.4% 89.2% 12.6% 10.8%
4—UZr-UMo
Fermi 3.912 0.313 — —
Other — — 0.666 1.482
Subtotal 3.912 0.313 0.666 1.482
% of subtotals 85.5% 17.4% 14.5% 82.6%
5—UZrHx
TRIGA 1.9199 7.234 — —
Other — — 0.033 0.078
Subtotal 1.9199 1.9199 0.033 0.078
% of subtotals 98.3% 96.1% 1.7% 3.9%
6—Highly enriched uranium oxide
Shippingport PWR 0.5216 3.657 — —
HFIR (outer) 2.9621 58.576 — —
HFIR (inner) — — 1.0546 26.582
Other — — 4.9984 35.845
Subtotal 3.4837 62.233 6.0530 62.427
% of subtotals 36.53% 49.9% 63.47% 50.1%
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Table 1. (continued).

Analyzed” Nonanalyzed"
Vol Vol
Fuel Group MTHM (m’) MTHM (m’)
7—U-Th oxide
Shippingport LWBR 21.898 8.516 — —
Other — — 28.293 16.605
Subtotal 21.898 8.516 28.293 16.605
% of subtotals 43.6% 33.9% 56.4% 66.1%
8—U-Th carbide
Ft. St. Vrain 23.3521 196.468 — —
Peach Bottom 2.9441 34.823 — —
Other — — 0.09487 0.005
Subtotal 26.2962 231.291 0.09487 0.005
% of subtotals 99.6% 100.0% 0.4% 0.0%
9—Low-enriched uranium oxide
TMI 81.768 129.571 — —
Other — — 91.269 68.268
Subtotal 81.768 129.571 91.269 68.268
% of subtotals 47.3% 65.5% 52.7% 34.5%

IATR—Advanced Test Reactor
FFTF—Fast Flux Test Facility
HFIR—High Flux Isotope Reactor
LWBR—Light Water Breeder Reactor

ORR—Oak Ridge Research
PWR—Pressurized Water Reactor
TMI—Three Mile Island

IMIT—Massachusetts Institute of Technology

TRIGA—Training Research Isotopes General Atomics

a. Quantities supported by a criticality analysis in a standard fuel canister.

b. Quantities not specifically supported with a criticality analysis in standard fuel canister.
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1.2.1 Horizontal Versus Vertical Orientation of an SNF Canister

The nature of the fuel in terms of composition and structure in many ways influences both the
strategy of loading the fuel in a canister and the basket concept. The initial analysis of any loaded canister
has always portrayed the intact fuel in a horizontal orientation within the intact basket/canister
combination. In reality, very little movement of fuel within the canister would result from vertical
orientation such as occurs during interim canister movements between storage positions or placement in a
waste package. Whether dry or wet, the loaded (individual) canister presents no criticality risk in any
orientation as long as both fuel and basket geometries are maintained within the canister.

1.2.2 Radial Versus Axial Reconfiguration of Fissile Materials

Subsequent analysis of any loaded canister in degraded cases has always been postulated on a
horizontal orientation of the canister within the waste package. Such an orientation allowed the analyst to
preclude any axial concentration mechanism of fissile mass within the canister once emplaced in the
repository. However, such analyses for degraded cases could not preclude radial redistribution of fissile
material within the degraded canister. Fuels within the canister are already distributed radially.
Experience would suggest gravity would prevail toward settlement of degraded materials toward the
bottom of a breached canister with degraded internals. However, unknowns with respect to behavior of
pins or solutions within a breached SNF canister could not preclude a radial expansion of fissile material
outward, which in most analyzed cases proved to promote a more reactive system.

1.3 Heavy Metals

Heavy metals are defined as the total mass of thorium (Th) + uranium (U) + plutonium (Pu).
Within the DOE SNF inventories, there are ranges, compositions, and mixtures of all the above. Certainly
the N-reactor fuel inventory of nearly 2,100 MTHM of the ~2,500 MTHM for all DOE SNF dominates
the heavy metal contribution intended for the repository. Yet the relatively low enrichment (<1.25%) of
the N-reactor fuel poses no criticality risk with the adopted approach of codisposal using two
multi-canister overpacks (MCOs) and two high-level waste (HLW) canisters in a waste package.

The balance of DOE fuel by its very nature as test or experimental fuel tends to be generally
highly enriched. These fuels, in terms of physical size, enrichment, and total fissile mass, suggested the
approach for proposing basket configurations, canister size selection, and fissile loads per canister.

By definition, highly enriched uranium (HEU) contains uranium with >20% enrichment in the
fissile species. In the case of mixed oxide (MOX) fuel, this translates to the percent of fissile *’Pu mixed
in with either depleted or natural uranium. Such a blending of heavy metals leads to the development of
effective enrichment reported in the SNF database.

Medium-enriched uranium (MEU) is listed as a fuel matrix material containing fissile uranium
(**3U or #°U) >5% and <20%. Very few fuels exist in the 5-15% range of enrichment within the DOE
SNF inventory. The MEU fuels at the 20% enriched boundary can conveniently be lumped with the HEU
fuels for modeling purposes.

Both MEU and HEU experience the most reactive system configuration when modeled as a fully
moderated, homogeneous distribution within any SNF canister. Conversely, the LEU fuels yield their
most reactive condition when modeled as heterogeneous pellets.*?

LEU encompasses all fuels with fissile enrichments of <5%. This group constitutes both
N-reactor and commercial fuels. Intact commercial fuels that remain intact fall into a group of fuels that
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will be shipped “bare” to the repository for the conventional disposal path followed by other commercial
fuels.

One other fissile species found in the DOE SNF inventory involves ***U. This isotope of uranium
is generally associated with thorium-based fuels (Ft. St. Vrain and Shippingport Light-Water Breeder
Reactor [LWBR]), which is the fertile material used to produce **U.

Whether **°Pu is associated with depleted uranium or ***U is associated with **Th, the nature of
both isotopes as fertile materials also allows the models to take credit as a parasitic neutron capture agent
when geochemical calculations (EQ3/6) associated with the degraded conditions show retention within
the system.

1.4 Moderator/Uranium Ratio

There exists for each proposed SNF canister a calculable void fraction based on displacement
caused by metal baskets and metals and other inert materials associated with the fuels themselves. This
displaced volume is based on intact fuel/basket configurations. Degradation scenarios and products
generally tend to displace moderator that might otherwise be available within any breached SNF canister.

Within a loaded canister, the void space represents the theoretical amount of water that can be
present in a canister. This calculation is done for the intact case, because most degradation products of the
fuels and baskets expand and thereby exclude moderator. Therefore, the intact case contributes to the
highest calculated mass of moderator. This relationship can be expressed by the following equation:

Volio = Volean — Volpg — (VOlﬁJel - VOidfuel)

where
Volino = Void volume capable of water fill
Volean = Volume inside canister
Volpske = Displacement volume of basket material
Volg, = Displacement volume of fuel assembly envelope
Voidger = Void volume within fuel assembly.

1.41 Hydrogen/Uranium Ratios

While typical calculations might refer to a hydrogen/uranium ratio, this would be a more
meaningful relationship for the LEU materials. In the case of many of the DOE fuels, the more highly
enriched fuels have little ***U to impact the criticality calculations. Under those circumstances, it
becomes more meaningful to express the hydrogen/fissile ratio or H/X.

Void space left over inside the canister after insertion of any basket, fuel, or moderator exclusion
material provides space for the potential accumulation of water in a flooded package. Within the
constraints of the standard canister, there will always be a calculable void volume and therefore a physical
mass of water (grams of hydrogen) that can influence system reactivity by how close the system is to
optimum moderation. This is an intertwined variable such that for a given “closed” system, decreasing
fissile mass (X) increases hydrogen (H); and this results in an altered H/X. The questions then become:
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(1) in which direction is the canister moving from an undermoderated or an overmoderated condition?
and (2) if the removal of fissile mass (lower atom-density) leads to a more optimally moderated condition,
does the fissile mass loss offset to actually promote a lower system reactivity?

In this report, a global H/X ratio for each canister is based on calculated void volume within any
loaded standard disposal canister (SDC). This calculation uses the calculated void volume of the usable
space within the canister minus the displaced space occupied by any basket minus the displaced volume
of the fuel after adjustment for some assumed void fraction of the fuel handling unit (FHU). This global
ratio reflects a somewhat theoretical and uniform homogenization of the uranium throughout the canister.
This assumption may not necessarily reflect either a lesser degree of degradation or a most reactive
configuration, but it will provide an indication of how close such a system might be to an optimally
moderated condition. Alternative H/X ratios might warrant further examination relative to the sensitivity
of a canister basket by calculating a different H/X ratio for a canister compartment. Fissile redistribution
inside a basket compartment that contains a hybrid fuel loading might actually increase the H/X ratio on a
very localized basis. This could occur with a fuel shape that may contain less fissile material than the
baseline fuel, but exhibit a higher fissile load per unit volume for that individual piece of fuel.

It is instructive to point out that many of the calculated H/X ratios associated with the various
packaging strategies range between 200 and 2,000. The H/X atom ratio for an optimally moderated HEU
sphere appears to be around 520 (see Reference 4 and Table 3) as portrayed by the characteristic S-curve
shown in Figure 2. The use of this figure should be considered to be illustrative of the concept of minimal
fissile mass associated with optimal moderation. The figure is in no way predictive of fissile mass limits
to be imposed on SNF canisters given the physical geometries, expected properties of the canister
internals, and the degradation materials.

Comparison of this calculated ratio for the other fuel is not intended to generate a licensing basis
for any fuel package. Rather, it merely provides a reasonable comparison of any proposed
canister/basket/fuel load combination against the baseline fuel for that canister/basket combination.

1.4.2 Comparative H/X Ratios

Calculated H/X ratios are determined for each canister based on the calculated void volume
between the impact plates minus the displaced volume of the intact fuels and the intact baskets. This
constitutes a somewhat theoretical evaluation as it maximizes the moderator content; degradation species
generally tend to displace water through formation of oxides such as goethite (FeOOH). It also makes a
simplifying assumption of 2% void space in solid fuels and a 50% void space for plate or pin-type fuels.
The calculated ratio is intended to provide a relative measure of how close or far away from optimum
moderation a loaded canister might be based on an assumed homogenization of fissile and moderator
completely filling the breached canister.

Calculated H/X ratios for homogeneous distribution of uranium within an SNF canister result in
equivalent uranium concentrations far in excess of the limit of uranium solubility in groundwater. Earlier
studies® of uranium solubility in J-13 groundwater used EQ3/6 calculations to provide a calculated
solubility of —4.5 (log) (M), which equates to a value of 3.16 E-05 M, or ~7.5E-03 g/L. Even the
aggressive acid conditions associated with reprocessing fuel elements for uranium recovery yielded
concentrations only in the range of 1.0-2.0 g/L. Calculated plutonium solubilities (see Reference 6) reveal
a two order-of-magnitude decrease [-7.0 (log) (M)] over uranium values.

Obtaining a homogenous distribution of HEU within most canisters is a physical impossibility.
However, calculation of the homogeneous H/X ratio offers a relative comparison whether the system is or
can be optimally moderated at some point in filling a breached canister with water. For a fuel that has a
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Figure 2. Masses of spheres of homogeneous water-moderated U(93.2) as functions of *°U density.

calculated H/X ratio that is undermoderated in a completely filled canister, it will always be
undermoderated through all degrees of filling. Conversely, a canister that is significantly overmoderated
when filled would have to go through the optimally moderated (minimum fissile) inflection point (see
Figure 2) (see Reference 4). However, not all the fissile material would experience full moderation. So,
calculated minimum fissile masses would be higher. The combination of fissile/moderator mix of greatest
concern resides with the cases that reflect near optimal moderation when fully flooded.

Table 3 presents the calculated values for uranium, moderator, and the equivalents for the H/X
ratios. This conversion allows the reader to equate the density values shown on the abscissa to their
equivalent H/X values. The italicized values represent interpolated values that lie between those taken
from specific ordinate values on the graph. The values presented in Figure 2 are for a sphere with optimal
moderation and reflection.

Figure 2 is illustrative of the importance attached to any criticality analysis that must deal with
the presence of moderator. First and foremost is the portrayal of minimum critical mass. Coupled with the
presence of moderator, any analysis provides what this report might reference as the optimally moderated
condition. Figure 2 represents an almost idealized configuration with a spherical shape and no other
contaminants that might otherwise displace moderator or provide some beneficial parasitic neutron
capture. The numeric values presented in Table 3 relate to the density of uranium shown on the X-axis of
Figure 2 into the more familiar H/X ratio used in the typical criticality analyses. This conversion was
done without any direct comparison to the kilogram values on the Y-axis. The minimum inflection point
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chosen for calculating the optimum H/X ratio used the density value of 0.5 associated with the k=1.0
curve.

Unfortunately, analyses of the baseline fuel/basket configurations cannot be reduced to the
simplicity shown in Figure 2. Horizontal cylinders represent a different configuration, and there will be a
concurrent increase in the minimum fissile mass needed to achieve criticality. In addition, there are inert
materials and a variety of enrichments and isotopic species that must be evaluated. It is the criticality
analyses for the individual fuel packages that determine what fissile masses can be packaged safely.
Certainly one of the goals of any criticality analysis of a DOE SNF canister in a postclosure environment
has been to determine the most reactive configuration, and those analyses have always included water.
Anything less than an SNF canister completely filled with water (water fraction <1.0) has resulted in a
less reactive condition as indicated by calculated kgs.

Of particular concern is the issue of an approach toward optimal moderation from either an over-
or undermoderated condition. In particular, the packaged Fermi fuel with a proposed fissile load of
~114.292 kg *°U is significantly greater than any other loaded SNF canister. The distinction of the Fermi
package is that the initial configuration results in an undermoderated condition. The strategy of this fuel
packaging is further enforced with the addition of poisoned iron beads for added moderated displacement.
In this case, the long-term performance is not so much increasing the H/X ratio through the addition of
more moderator (constrained by the physical void volume inside the filled canister), but by increasing the
H/X ratio through the loss of fissile material. The issue of optimal moderation and most reactive
configuration also supports analysis of collapsing plates/pins/rods inside a canister that promotes a less
reactive configuration. Conversely, the void space and low fissile loads that are associated with a fuel
canister loaded with Peach Bottom fuel suggests an ability to transition from undermoderated to
significantly overmoderated for a fully flooded package.

There are a number of issues to consider when evaluating a different fuel loading in a given
basket. There is an identified optimum H/X ratio that can be calculated for any fissile system.
Unfortunately, the analysis done to support fuel packaging for the DOE fuel does not necessarily coincide
with achieving this optimum ratio, at least for the intact fuel in a fully flooded canister.

Calculating the H/X ratio for the intact fuel can serve as a benchmark for other fuels in a similar
configuration (same basket/different fissile load). There are basically two conditions for the fully flooded
canister that minimize criticality risk, i.e., significantly undermoderated or highly overmoderated.
Examination of a couple of proposed packaging configurations provides an example of these conditions,
both of which were evaluated for specific fuels.

The case for the significantly undermoderated fuel is best represented by the proposed packaging
for the Fermi fuel. This particular configuration takes advantage of the derodded condition of these 25.3%
enriched fuels that are close packed in an individual canister. When installed in twelve cans per layer and
two layers deep, the resultant package containing 114.292 kg **°U can be made safe with 9.04 kg
gadolinium distributed within the 10-ft canister. Calculations indicate that the gadolinium poison in the
tubes is insufficient and that poisoned bead material needs to be added in the interstitial spaces between
the basket tubes. The inability to install the necessary gadolinium in the tube alone required use of
poisoned beads. Such an approach provides the added poison needed and additional moderator
displacement. Calculations indicate that this configuration results in a significantly undermoderated
system. A potential problem arises if this packaging concept is used with other fuels with decreased
packing density or smaller displaced volume provided by the fuel. Under those circumstances, a
decreased fuel volume with equivalent (or higher) fissile enrichment (loading) can promote a more
reactive system with all other variables being held relatively constant.
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The converse case exists for the TRIGA fuel, which is already near optimum moderation by
virtue of the hydride nature of the fuel. In the proposed packaging scheme for this fuel, addition of water
into the SNF canister can be shown to (1) provide an overmoderated condition for the fuel based on
available void volume and (2) thermalize any available neutrons down where the gadolinium is more
effective as a poison.

1.5 Enrichment

One of the practical aspects of criticality analysis for DOE fuels is the wide range of enrichments
encountered. Typically, these fuels have been categorized into nine distinct fuel groups. These groupings
were selected based on the chemical matrix of the fuel itself rather than on the basis of enrichment or
fissile type. Given the range of enrichments (from LEU [<5%] to MEU [>5% to <20%] to HEU [>20%])
that might be found in any category, the baseline fuel selected as representative for that group was one
that might be expected to create the most reactive system.

Certainly one of the greater concerns is minimizing criticality risk for the highly enriched fuels.
The models for these fuels used a homogeneous distribution of fissile material within the confines of the
SNF canister and waste package. At least for the LEU oxide and the U-metal categories, fuels with
enrichments <5% dominated the fuels in those groups. So criticality models to address those fuels used a
latticing technique to evaluate configurations for the most reactive condition. This approach has been
validated in other systems involving the <5% enrichments. Pruvost and Paxton (see Reference 4) address
the latticing approach with the following statement: “The maximum **°U enrichment of the uranium at
which latticing can reduce the critical mass is estimated to be about 6 wt% ***U. As noted above, the
critical mass of uranium below this enrichment can be lower for a heterogeneous system than for
homogenous uranium or the same enrichment. Therefore, subcritical limits for a lattice are smaller than
for homogeneous uranium of the same enrichment.” Such an approach is further reinforced by Lamarsh
(see Reference 5): “If the decrease in f'is more than offset by the increase in p and ¢, the value of k., will
clearly be larger for the heterogeneous system. This is the case for natural and for slightly enriched
uranium. Thus up to an enrichment of approximately 5% U**’, k,, is increased by lumping the fuel, while
at higher enrichments it is decreased.”

1.6 Linear Loading in SNF Canisters

The concept of using linear loading served as a basis for determining how much fissile material
could reasonably be loaded within the cross-sectional confines of the SNF canister. Linear loading is a
derived term that relates directly to horizontally oriented canisters. Much of the safety predicted for
postclosure packages is dependent on an inability to axially reconfigure the fissile mass by tipping a
degraded canister on end. Fissile mass can be (and is) varied within the stipulated diameter of the standard
canister, but still allows the analysts to assume a relatively uniform (nonconcentrating) quantity of fissile
material distributed over the usable length of the canister. While linear loading is not a parameter used in
MCNP (Monte Carlo N-Particle) calculations, it does help define the atom-densities expected within the
confines of the SNF canister.

The calculation (see Appendix A) of the linear loading for fissile material in the various canisters
is based on the fissile mass in the canister divided by the free length between the impact plates (see
Table 4). Such a calculation provides one measure for comparing fissile loads on a per canister basis. This
value is one and the same for single elements or assemblies in a canister. Where multiple elements are
interposed in a basket, the linear loading comparison would be based on the relationship:

(fissile mass/assembly)*(number of assemblies/canister) / (usable length of the canister) = g/cm
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Table 4. Empty spent nuclear fuel canister weights.
Canister diameter (in.) 18 24
Canister length (ft) 10 15 10 15
Nominal O.D., in. 18 18 24 24
(mm) (457) (457) (610) (610)
Minimum I.D. w/sleeve, in. 16.93 16.93 22.8 22.8
(mm) (430.02) (430.02) (579.12) (579.12)
Minimum I.D. wo/sleeve, in. 17.25 17.25 23 23
(mm) (438.15) (438.15) (584.20) (584.20)
Canister outer length, in. 118.11 179.92 118.11 179.92
(mm) (3000) (4570) (3000) (4570)
Canister inner length, in. 101 163 98.25 160
(mm) (2565) (4140.2) (2495.6) (4064.0)
Impact plates (2), Ib 182 182 394 394
(kg) (82.5) (82.5) (178.7) (178.7)
Sleeve, 1b 281 455 371 601
(kg) (123.4) (206.3) (168.3) (272.6)
Max. total allowable weight, 1b (kg) 5005 6000 8996 10000
(2270) (2721) (4080) (4535)
Internal void volume w/sleeve, ft* (m?) 13.03 21.1 22.98 35.87
(0.369) (0.598) (0.651) (1.016)
Internal void volume wo/sleeve, ft* (m’) 13.52 21.91 23.38 38.23
(0.383) (0.620) (0.662) (1.083)

Such a simplification does result in a decreased linear loading where the combination of intact
FHUs might leave an unfilled space at the end of the loaded canister. However, it is just one way to
normalize the fissile loads on a per canister basis. This assumption of fissile distribution does allow for
axial redistribution of fissile material outward from the assemblies, i.e., fissile movement leading to
dilution as opposed to fissile movement inward promoting concentration. It is easier to promote
arguments of material moving into voids than preferentially moving into space already physically

occupied by solid materials.

Concurrently, this information can also be extrapolated into fissile atom-densities within the void
space of the canister (neglecting the displaced volume of any nonfissile components), e.g., fuel end
fittings, cladding, and basket materials. The use and distribution of the fissile mass throughout the void
volume of the canister provides a fissile comparison between canisters regardless of canister or fuel
details. This extrapolation can be significant with respect to highly enriched fissile systems because the
homogeneity promotes increased reactivities. Such homogenization would result in a fissile concentration
in solution that is far beyond the solubility limits of uranium or plutonium in the available water. While
consistent with promoting higher calculated k.8, such configurations are physical impossibilities that can
be created in the MCNP model only by positioning solid materials throughout a defined volume that is

filled with water.
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Each canister configuration can be influenced by degradation properties of the internal contents
of both the SNF canister and the codisposal waste package. While these degradation components and
properties are accounted for in the baseline fuels analyses, they may vary slightly for other fuel types
within a criticality category because of different masses, compositions, or basket designs. Generally, these
other materials are either neutral (by absorption cross section) or helpful (by moderator displacement)
with regard to their impact in decreasing system reactivity.

1.7 Fuel Construction

Fuel in the DOE SNF inventory originates from a number of different reactors. The characteristic
size, shape, and construction were somewhat dependent on the function intended for the reactor and its
operating characteristics.

1.7.1  Solid Body Fuel

Solid body fuel is generally associated with reactor power densities where heat dissipation is not
a significant aspect of reactor operations. The cylindrical structure of the TRIGA fuel has small interstitial
spaces to account for in terms of added moderator to any analysis. For purposes of estimating space for
additional moderator in a flooded condition, the interstitial space is assumed to represent 2% of the total
fuel element volume. The fissile concentration (fissile atom-density per FHU) is calculated from the
overall volume while neglecting cladding thickness.

1.7.2 Pins or Plates

Fuels with plates (ATR, ORR, MIT, HFIR, Shippingport Pressurized Water Reactor [PWR]) or
pins (Fermi cans, Shippingport LWBR, Fast Flux Test Facility [FFTF]) generally experienced higher
power densities and the associated heat dissipation. Calculations of void fractions for estimating H/X
ratios used a value of 50%. While more rigorous calculations might show a range of 40-60%, comparison
of calculated H/X ratios for a fuel like Shippingport PWR shows a net effect on a calculated H/X ratio,
ranging from 1,194 (40% void) to 1,214 (50% void) to 1,234 (60% void) within an SDC.

1.8 Packaging Limitations

Limitation on the packaged fuel within any given SDC must demonstrate an ability to maintain a
calculated k¢ below an assigned interim critical limit.

1.8.1 Initial Packaging—Dry (Carbide) Versus Wet Loading (N-reactor)

Initial packaging for any of the DOE SNF should be accomplished with the goal that subsequent
disassembly and repackaging or modification of an SNF canister at a later date would not be required.

N-reactor type fuel creates the bulk (by mass) of the total of DOE fuel. These have been loaded in
MCOs while underwater, so the fully flooded, intact condition for single MCOs has already had to satisfy
criticality risk criteria. The MCOs are loaded underwater, have a head installed on the MCO while
underwater, and are then dried after loading. The loaded MCOs are then transferred to a dry storage
facility while awaiting shipment to the repository.

The remainder of the DOE SNF inventory exists in either dry or wet storage. Current expectations
are that all remaining DOE fuel will be loaded in a dry environment. Fuel that is currently in wet storage
will undergo a certified drying step prior to loading in any canister. Many fuels currently in wet storage
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are already undergoing transfer to dry storage prior to packaging, but without undergoing any certified
drying operations.

1.8.2 Interim Storage at Shipper—Dry Canister Array

By necessity, there will be some number of interim or lag storage positions in a dry facility that
can be monitored for storage conditions. After they are loaded and sealed, all the SNF canisters will
continue to be stored in a dry environment in order to minimize corrosion and water reintroduction due to
an undetected or infantile failure of the canister.

1.8.3 Transportation Cask

The transportation casks suitable for DOE fuel shipments have yet to be designed. Furthermore,
the quantity and arrangement of SNF canisters inside these casks are yet to be determined. There is an
expectation of multiple SNF canisters within each transport cask, and there is an expectation of a
poisoned transport cask basket to deal with the potential of water flooding for accident conditions.

1.8.3.1 Dry, Poisoned Array. The initial calculations for a single canister of DOE SNF address a
loaded fuel canister with both fuel and basket both dry and intact. The criticality analysis models
developed for post closure (initial conditions of dry and intact) would be valid for use in canister arrays
within the transport cask models.

1.8.3.2  Flooded, Poisoned Array. Follow-up calculations examine the loaded DOE SNF canister
with both fuel and basket intact. These flooded calculations are generally conducted with any intact,
unpoisoned basket. Incorporating poison into any proposed SNF canister resulted from subsequent
calculations that showed the need for some degree of poisoning based on assumptions relative to fuel or
basket degradation. The proposed gadolinium poisoning has been shown to be more effective in a fully
flooded condition because the neutron capture cross section improves with a more thermalized system.

1.8.3.3 Differentially Flooded, Poisoned Array. There is an expectation that shipment of
multiple SNF canisters in the same transport cask will be used to minimize costs associated with transport
of the canisters to the repository. The failure scenarios have yet to be formed for such transportation
casks, but there is some certainty that water inside the transport cask will be a given. An issue that will
need to be resolved is whether the integrity of the loaded SNF canister can be maintained during a
transport cask drop accident scenario. That case may need to be addressed specifically for the
differentially flooded scenario (SNF canister flooded/transport cask dry). Such a condition promotes
neutronic coupling that would require a poisoned basket within the transport cask, because some DOE
SNF canisters have no required poisoning.

1.8.4 Interim Storage at Repository

Interim storage for DOE SNF canisters at the repository surface facility is still in preliminary
design stages. The canisters as received from the shipper in the transport cask will be unloaded behind
shielding walls and within an enforced moderator exclusion zone. Storage will need to accommodate SNF
canisters that range from 18-in. to the 25-in. diameter MCOs. Heights will range from 10 to 15 ft.
Canisters would be handled only one at a time and would be unloaded from the transport cask or loaded
into any waste package in a vertical orientation.
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1.8.5 Postclosure at Repository

Postclosure conditions in the repository cover the time period, at least for criticality analysis,
from the time of drift emplacement of any waste package containing DOE SNF canisters out to beyond
100,000 years.”*® This amount of time is needed to evaluate fuel/basket performance for total degradation
if water were to breach the waste package/SNF canister combination.

1.8.5.1 Single Canister—Intact/Dry. Single SNF canisters that have been horizontally placed in a
codisposal waste package provide a convenient baseline case for criticality analysis with intact internals.

1.8.5.2  Single Canister—Intact/Flooded. The distribution of fissile material enforced by the
intact fuels has not required poisons as long as the fuel and basket geometries are maintained, even
though they have been flooded with water.

1.8.5.3 Single Canister—Degraded/Flooded. Analyses have shown that it is only the degraded
condition of some fuel and baskets with fully moderated conditions that require a quantity of neutron
poisoning. The flooded degradation scenarios are singularly tied to postclosure in the repository; there
were no identified scenarios in the preclosure timeframe that provided both fuel reconfiguration and
moderator introduction. A specialized-case analysis'® was completed for the self-moderated TRIGA fuel
that indicated poisoned basket tubes could provide the necessary poisoning to remain below the critical
limit for a reconfigured fissile mass due to a drop accident.
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2. CANISTER FEATURES

SNF canister designs are classified by diameter and length (e.g., 18-in. diameter and a 10-ft
length) based on a standard design. An exception to this nomenclature is the MCO, which is designed to
accommodate the low-enriched fuels associated primarily with the N-reactor at Hanford.

21 Canister Designs

SNF canister designs have attempted to standardize both length and diameter. The end result has
been the evolution of SNF canister with both 18- or 24-in. diameters and either 10- or 15-ft lengths. The
singular exception for DOE SNF packaging is the use of a MCO for N-reactor fuels. This MCO package
has a maximum outer diameter of 25.31 in. and a length of 166.42 in.

211 18 Inch—Short

This canister has a specified overall length of 10 ft and an outer diameter of 18 in. The usable
space inside the canister equates to an internal length of 8.4 ft. The maximum inside diameter is
determined by the outer diameter (18 in.) minus two times the wall thickness (0.375-in.), which equals
17.25 in. Additional diameter reductions are expected to accommodate the possibility of an internal sleeve
(TBD based on fuel type and basket design) and account for manufacturing tolerances of the pipe used in
canister fabrication.

Typically, planned use of the smaller diameter canisters is reserved for those medium and highly
enriched fuels identified in the DOE inventory. To affect the codisposal strategy, the shorter fuels are
shown in the short canisters to fulfill a need to match (approximately) the number of 10-ft HLW canisters
generated at both Savannah River and West Valley. Packaging of DOE fuel for minimizing criticality risk
is virtually independent of canister length. Most analyses for the fuel loads being contemplated would
show the infinite cylinder length to be in the range of 5 to 6 ft. For purposes of definition, the infinite
length is that length which produces the same calculated k.g regardless of the canister length.

21.2 18 Inch—Long

This canister has a specified overall length of 15 ft and an outer diameter of 18 in. The usable
space inside the canister equates to an internal length of 13.6 ft and an internal diameter of 17.25 in.
Additional diameter reductions are expected to accommodate the possibility of an internal sleeve (TBD
based on fuel type and basket design) and account for manufacturing tolerances of the pipe used in
canister fabrication.

The use of the longer 18-in. canisters is generally reserved for those longer HEU fuels.
Exceptions may occur as in the case of the Ft. St. Vrain fuels, where three-high stacked blocks in short
canisters versus five-high blocks in long canisters would cause an inordinate increase in the total number
of SNF canisters generated.

21.3 24 Inch—Short

This canister has a specified overall length of 10 ft and an outer diameter of 24 in. The usable
space inside the canister equates to an internal length of 8.2 ft. The maximum inside diameter is
determined by the outer diameter of 24 in. minus two times the wall thickness 0.500 in., which equals
23.00 in. Additional diameter reductions are expected to accommodate the possibility of an internal sleeve
(TBD based on fuel type and basket design) and account for manufacturing tolerances of the pipe used in
canister fabrication.
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Relative to DOE fuels, this would be a specialized canister loading related most likely to the
disposal of LEU fuel or packaging of small quantities of HEU material in high-integrity canisters (HICs).

214 24 Inch—Long

This canister has a specified overall length of 15 ft and an outer diameter of 24 in. The usable
space inside the canister equates to an internal length of 13.33 ft and a nominal internal diameter of
23.00 in. Additional diameter reductions are expected to accommodate the possibility of an internal sleeve
(TBD based on fuel type and basket design) and account for manufacturing tolerances of the pipe used in
canister fabrication.

There are to date two identified uses of this particular canister design. They are both related to
highly enriched fuels, i.e., High Flux Isotope Reactor (HFIR) (outer assembly only) and Shippingport
LWBR power flattening blanket assemblies. Both fuels contain significant quantities of fissile material,
but because of their physical size cannot use the 18-in. canister. These fuel units appear to require
poisoning internal to the fuel assemblies themselves in conjunction with their installation in the
24-in.-diameter canister.

2.1.5 Multi-canister Overpack

Developed initially as an interim dry-storage container for various N-reactor fuels, the MCO is
now in the process of being loaded and qualified for other fuels such as the single-pass reactor fuel and
Shippingport LWBR blanket material (depleted U).

The MCOs are constructed of 304L stainless steel and are standardized with respect to
dimensional information (lengths, diameters, canister thickness, head closure details). The MCO has a
maximum outer diameter of 64.29 ¢m (25.31 in.) and an overall length of 422.707 cm (166.42 in.)."

The internals of the MCO (baskets) vary depending on what type of fuel is being loaded. The
Mark 1A fuel can place up to 288 elements in a six-high basket stack. The Mark IV fuel baskets are
designed to accommodate up to 270 elements. Either MCO is designed to accommodate scrap baskets
installed on each end of the stack. Each scrap basket can be loaded up to 50% of the fuel installed in an
intact basket.

Current plans are to modify the internal basket design to allow packaging of single-pass reactor
fuel in the MCO. Yet other planned modifications to the MCO internals will also allow for packaging of
the irradiated, depleted uranium associated with the Shippingport LWBR reflector assemblies.

2.1.6 Application

Use of standardized canisters provides a basis for predictability in terms of fissile loading.
Furthermore, it allows for minimization of packaging variants within a waste package. Generally, the
18-in.-diameter canisters were used for packaging the MEU and HEU fuels within the DOE fuel inventory.

There are no specified lower fissile load limits below which criticality risk is not a concern or
must not be addressed. The standard canister is far larger in diameter (and fissile mass content) than the
single parameter limit of 5.39 in. for a fissile solution (760 g **U) with an infinite reflection (see
Reference 4). It is all the other assumptions concerning fissile mass, its distribution within the canister,
presence of inert materials, and limitations on available moderator that enable a packaging strategy with
the large diameter canisters. In certain circumstances, some of the proposed fuel packages ended up with
an identified need for some degree of poisoning.
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Figure 3. Standard 18-in. spent nuclear fuel canister.
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Within any canister, whether 18 in. or 24 in., criticality analysis has always addressed the radial
expansion of materials and components within any proposed canister loading. There were exceptions such
as the Shippingport PWR assemblies, where the structure and materials used allowed the analyst to take
credit for retention of geometry and containment of fissile material. So for any fuel other than
Shippingport PWR that uses the proposed basket for this fuel, the analysis must at least consider the
possibility of radial expansion of fissile material outside the bounds of the fuel/basket combination.

The 24-in.-diameter canisters were generally reserved for the LEU fuel packaging. Because of the
lower fissile enrichments and correspondingly higher 2**U concentrations, use of larger diameter canisters
for an equivalent PWR fuel assembly'? is possible without poisoning, even when applying the more
stringent critical limit of k. <0.93 for DOE SNF to commercial fuels.

A summary of the basket identification numbering system appears in Table 5. Variants of those
basket types found in Appendix A use nomenclature such as Type 1a-2 to denote two-stacked Type 1a
baskets.

2.1.7 Canister Materials of Construction

The preliminary design specification promoted for the standard canister calls for use of 316L
stainless steel for canister construction."

2.1.8 Internal Sleeve

There has been some discussion of insertion of a sleeve internal to the SNF canister as an added
level of protection against stress risers that might be created by the relatively sharp edges associated with
some of the basket designs. Such an installation may impact the allowable fuel loading into a canister.
The internal sleeve would impact the criticality analysis by adding to the reflecting surface surrounding
the fuel, which could be accounted for by merely adding thickness to the SNF canister. But the internal
sleeve also subtracts from the available void volume for water addition to the canister upon some
postulated breach.

219 Basket
Table 5. Spent nuclear fuel baskets and applicable fuels.

Type Baseline fuel Other fuels
la ATR—poisoned plates MIT, ORR, Peach Bottom
1b ORR—nonpoisoned (Alternative basket)
Ic MIT—poisoned plates (Not used)
2a Mark 1A—MCO fuel basket Single pass reactor
2b Mark IV—MCO fuel basket
3 FFTF—spoke and wheel (poisoned) HICs?

Fermi—12-tubes (poisoned basket) Peach Bottom
5 TRIGA—37-tube (poisoned basket) Individual fuel pins?
6 Shippingport PWR—single square
6a HFIR (inner)—single pipe/large diameter
canister/TMI
6b HFIR (outer)—single pipe
6¢ Shippingport LWBR—single rectangle
7 Generic—four-quadrant HICs?
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2.1.10 Positioning Fuel Elements at Loading

Fuel elements are expected to be loaded in any basket structure or SDC while in a vertical
orientation. Fuel baskets loaded outside the fuel canister will also be loaded vertically into the respective
canister. Other fuel baskets may be integral to the canister at the time the canister is moved into the
loading station. Generally, such configurations will require greater lift heights of the individual fuels at
the time of loading.

There will be necessary dimensional allowances in each basket position to facilitate canister
loading. As such, individual fuels may be positioned slightly closer together than for an array of fuels in a
horizontally oriented canister. Horizontal orientation is the preferred position for performing criticality
analysis. Such orientation reflects the position expected for all fuels at all times other than the initial
loading in the open canister and loading the sealed canisters in the waste package. Any vertical
orientation of a loaded SNF canister is expected to occur only under moderator exclusion controls. None
of the baseline criticality analyses completed to date show any reactivities even approaching the critical
limit without the presence of moderator.

2.1.11 Poisoned Canisters

Some baseline fuel loads in an SDC require the addition of neutron poisons. The use or need of
such poisons appears to be required only for the degraded cases, where either the fuel or the basket
degrades internal to the SDC.

2.1.11.1  Aluminum Fuels. Baskets intended to facilitate packaging of aluminum-based fuels plan to
use a Hastelloy C-4 alloy modified with ~2 wt% gadolinium. This basket design will be designated as a
Type la basket. Use of this ten-compartment basket design does not necessarily optimize the packing
density of fuels of other smaller fuels. Use of other baskets is not precluded if the necessary criticality
analyses are performed to demonstrate equivalency with parameters modeled in the Type 1a basket (see
Figure 4), e.g., linear loading, total fissile, enrichment, and H/X ratio.

2.1.11.2 MOX (FFTF). MOX fuels are best typified with the FFTF fuels and their approximate
loading of 9 kg fissile ***Pu per element. The wheel-and-spoke design was established to accommodate
both the FFTF assemblies and the IDENT-69 canisters with their various fuel loads of partially
disassembled FFTF assemblies and loose rods. The combination of specified poisoning requirements and
the uncertainties associated with fissile distributions inside the IDENTSs requires a derating of the canister.
This is accomplished by blinding one of the loading positions such that only five FFTF assemblies or four
FFTF assemblies and one IDENT can be loaded in the canister.

2.1.11.3 UZr-Mo (Fermi). The packaging strategy for this canister requires poisoning both the basket
tubes containing the cans with the derodded fuel pins, and poisoned beads interstitial between the basket
tubes. The poisoned beads perform a twofold function. They provide additional poison to the package for
the degraded condition and moderator exclusion to further enforce an undermoderated condition within
the SDC.

2.1.11.4 UZrHx (TRIGA). The baseline analysis identified a minimum of 12 poisoned tubes out of
37 tubes in a basket. Consideration of controls during basket fabrication suggests it would be easier to
ensure poisoning installation, both in terms of quantity and location, if all tubes were poisoned. The
incremental cost of the additional poisoned tubes is minimal to the overall cost of the SDC itself.

2.1.11.5 U/Th oxide (Shippingport LWBR). The Shippingport LWBR analysis was based on just
the seed assemblies because they would fit inside an 18-in. x 15-ft SDC. Yet the fissile loading coupled
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with the U fissile isotope makes this fuel a candidate for poisoning for degraded cases. Because the
packaging per canister is limited to a single assembly, use of poisons peripheral to the assembly offers no
appreciable reduction in reactivity. Poisoning for this particular assembly must address radial expansion
of the pins inside the basket partition. To affect the poisoning for this eventuality, the addition of
poisoned beads to the fuel assembly compartment after fuel installation is indicated.

The various power flattening blanket designs for Shippingport LWBR provide yet another
problem for packaging. The blanket assemblies contain both greater quantities of fissile material and are
of a size that dictates disposal of the intact assemblies in the 24-in. x 15-ft SDCs. Neither the increased
cross-section dimension nor higher fissile quantities contribute to increased criticality risk. Ongoing
analyses indicate both poisoning and maintenance of geometry are needed to minimize criticality risk
with these assemblies in the flooded condition.

2.1.12 Nonpoisoned Canisters

2.1.12.1 U-metal (N-reactor). N-reactor fuels and other associated fuels with similar characteristics
(single-pass reactor fuels) have such low enrichments (<1.25% enrichment) that they are incapable of
achieving criticality except in highly engineered systems.

The codisposal concept that uses two MCOs with two HLW canisters in a waste package remains
below subcritical limits for all conceivable scenarios. Indeed, three MCOs loaded with one HLW canister
inside a waste package have been shown (see Reference 9) to remain below the critical limit, but the
3 x 1 array in the waste package would create a load imbalance that should be avoided if possible.

2.1.12.2 HEU Oxide (Shippingport PWR). The durability of the Shippingport PWR assembly
precludes any degradation scenario. Without reconfiguration of the fissile material within the PWR
assembly, there is minimal criticality risk with these assemblies.

Another assembly within the HEU group that has been analyzed (HFIR outer assembly) has
construction features that favor degradation and fissile masses consistent with other fuels that require
poisoning. The physical size and design of the element require some combination of moderator exclusion
and poisoning in the center of the annular assembly.'*

2.1.12.3 Graphite (U/Th Carbide). Ft. St. Vrain is composed of highly enriched uranium carbide
fuel kernels in a carbon matrix. The quantity of fissile material has a relatively small concentration, which
when distributed in the carbon block generates a volume-limited system that requires no poisoning
regardless of the degradation scenario. These fuel blocks offer the option on stacking three high in a 10-ft
canister or five high in a 15-ft canister, and neither configuration requires poisoning.

The other fuel of interest in this group includes the Peach Bottom (both Core 1 and Core 2) fuels.
The length of the fuel assemblies dictates loading in a 15-ft canister. However, the currently proposed
fissile loading (2.53 kg **°U per canister) is at most 35% of that proposed for Ft. St. Vrain fuels in a 15-ft
canister or only 12% of the baseline fuel (Advanced Test Reactor [ATR]) in a 10-position (Type 1a-1)
basket.

2.1.12.4 LEU Oxide (TMI Debris). The Three Mile Island Unit 2 (TMI-2) debris canisters constitute
the bulk of the LEU oxide material to be disposed of in a standard canister. Much of the remaining LEU
oxide material has been identified for disposal as intact and bare commercial assemblies that follow the
disposal path identified for all other commercial nuclear fuel.
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The TMI-2 debris canisters consist of one of three types of canisters.'® They are denoted as:
(1) defueling (D designator), (2) knockout (K designator) or, (3) filter (F designator). Each canister in the
inventory has a listed content for total uranium, fissile uranium, and plutonium. None of the canisters
included more than the equivalent of more than one commercial PWR assembly at a maximum
beginning-of-life (BOL) enrichment of 2.96%.
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3. SHAPES

SNF used in DOE reactors comes in many shapes and sizes. The varieties of these fuels suggest
that there can be no one solution to the packaging strategy that will maximize fuel loadings into the
standard canisters.

The primary concept of baskets with a standard canister is to facilitate loading fuel in expected
vertical loading operations. Fuel that would otherwise crisscross if not constrained in one position until
the others fuels are loaded could hinder such vertical operations. Such a structure also provides a defined
geometry for a starting point in criticality calculations.

Second, the canister can perform a number of other intended functions. Stacked basket designs
can aid in the loading of short fuels in long canisters, while a basket with smaller fuels can be loaded with
individual FHUs, then subsequently loaded into the standard canisters.

In addition, a defined basket structure can enforce a prescribed fuel loading that provides some
assurance of controlling (by space allocation) the allowable fissile material loaded into any canister for
any fuel identified for a specific basket.

3.1 Basket Designs

Basket designs are predicated on providing a predictable array of fuels within a confined space
for baseline calculations of intact fuels and intact baskets. Any packaging scheme assumes that fuels will
be loaded in a vertical orientation. Furthermore, the goal is to maximize fuel loads given the physical
constraints of a standard canister. These goals will be met by a variety of basket designs (details follow)
to accommodate the various cross-sectional shapes and lengths of the SNF. However, the open area of
each basket position must be such that it does not provide an operational constraint during fuel loading
where fuel alignment or slight errors in dimensional information for any fuel might impact the ability to
load the given basket.

While there may be an assumed structural integrity of a given basket, that assumption is
incidental to the associated criticality risk within the package. It is only if moderator is introduced to the
loaded SNF canister that criticality becomes an issue to be addressed and thereby influence basket
designs. During fuel loading, the basket facilitates positioning of the fuels within the canister and enforces
the limit of fuel that can be loaded in that basket/canister combination, whether by piece count, fissile
mass, or physical size of the SNF. Without moderator, there is little neutron interaction in any dry
package. Fuel in dry packages exhibits low neutron interaction regardless of the presence of a basket and
the pitch of the fuel pieces. Such an assumption does rely on a uniform, linear loading of the canister.

Baskets are not assumed to be specific to fuel types, nor are fuel types assumed to be specific to
any given basket design. As an example, the Type 1a basket design for the ATR aluminum fuel will now
be applied not only to ATR fuel, but to MIT (Massachusetts Institute of Technology) and ORR (Oak
Ridge Research) within the aluminum fuel group, the Peach Bottom fuels within the graphite group, and
certain fuels within the HEU oxide group. What is at issue with this mixing and matching of fuels to
baskets is not so much what cladding or fuel matrix material is involved, but what linear fissile loading
can be enforced for each loaded canister. To this end, the calculated linear loads per canister will be
compared against the baseline linear fissile load for that basket based on an intact fuel for that basket. As
an example, the shape of the Peach Bottom graphite fuel allows it to be loaded in the 10-compartment
basket designed for the ATR fuel, although the basket will be continuous in length rather than segmented
for stacking in a canister. The calculated linear fissile loading for the Core 2 Peach Bottom fuel in the
standard canister (0.5339 g/cm) should be compared against the ATR linear fissile load for ATR fuel
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(85.4331 g/cm). Even when Peach Bottom fuel is compared against Ft. St. Vrain fissile loading

(1.8045 g/cm), such a comparison suggests a nonpoisoned basket could be used for Peach Bottom
disposal. The use of an unpoisoned Type 1a basket for Peach Bottom fuel would have to be proven
through a criticality analysis that would show a calculated k. for an intact fuel configuration that is less
than that for the same basket loaded with ATR fuel.

311 Fuel Cross-section Designs

The question of structural integrity of the baskets invariably arises during accident scenario
discussions. Ultimately, degradation analyses examine the retention of fuel shapes and degradation of the
basket, retention of basket geometry and degradation of fuel, and degradation of both. The calculated
neutronics between fuels within a canister with a basket will be somewhat attenuated by the basket, but
the presence of a poisoned basket is not needed to enforce criticality safety until moderator (as water) is
introduced into the SNF canister and degradation occurs.

3.1.1.1 Poisoned (ATR 10-position) Versus Unpoisoned (ORR 10-position) Baskets.
Thin gauge metal wall on the periphery provides containment of fuel elements in stacked baskets. A
criticality analysis could neglect the volume of this sheet metal for moderator displacement and its
thickness in terms of reflection or could evaluate the reflective boundary of the canister with the added
thickness of the sleeve.

Volume basis of a loaded SNF canister will use a nominal 17.25-in. inner diameter for calculating
the maximum amount of moderator. The use of a sleeve internal to the canister for some fuels would
decrease the inner diameter of the canister. For the undermoderated conditions found in most
configurations studied to date, the increase in moderator is likely a more conservative approach to
maximizing reactivity than the incremental reactivity increase provided by an added, relatively thin
reflective surface.

There is generally an assumed base plate for each basket that will translate into moderator
displacement. It also promotes a decreased reactivity between baskets because of its reflective properties.
The aspect ratio that the fuels (when stacked end-to-end) present to one another in the basket
compartments provides very little neutronic interaction. Such a base plate can provide a small degree of
isolation from one basket to another, but at most it is a neutral feature of the canister with respect to
criticality.

Design of the baskets are expected to incorporate some type of grappling or lifting capability that
will allow nesting of the baskets on top of one another at the time of placement into the SNF canister. It is
not the intent of this report to develop these designs, but rather to point out this need to operational
personnel so they might be involved in the design process for the baskets.

3.1.2 Basket Heights

Basket heights can be customized to accommodate the length of the fuel subject to disposal.
Some fuel may provide a fill-height of some 60%, such that two baskets will not fit in a 10-ft canister, nor
would two of them completely fill a 15-ft canister. Such an arrangement suggests a hybrid canister fill
with perhaps a medium and a short canister to optimize space (and thereby minimize canister counts).
This may require mixing fuels within and perhaps across criticality fuel groups. All such arrangements
would require an individual criticality analysis for that canister with intact fuels both dry and flooded. But
as long as the linear loading and total fissile mass and calculated k.gs for the canister falls below the
baseline criticality analysis done for postclosure, additional degradation analyses should not be needed.
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Figure 4. Ten-compartment basket (Type 1a) layout for ATR fuel.

3.1.3 Basket Bottom Plate

The bottom plate will use a standard thickness of 6.35-mm (0.25-in.) without any assumption of
poisoning in the plate itself. These bottom plates will only be used when the basket is segmented for
stacking inside the standard SNF canisters. The plates are not intended as a physical separation barrier,
but rather to facilitate vertical operations with respect to both fuel and canisters.

314 Basket Materials of Construction

Typically, baskets can be made of any 300 series austenitic stainless steel. Structural performance
of the basket material has not been an issue for any canister fuel loading that can take credit for water
moderator exclusion. The standard canister itself will be qualified as to leak-tightness and nonbreach for
drop scenarios. For those special cases where neutron poisoning is indicated for selected fuel packages
under degraded conditions, many times these poisoning requirements can be met exclusively with the use
of a C-4 alloy with 2 wt% gadolinium as a basket material (see following details). Incorporating the
gadolinium as part of the metal in the C-4 alloy provides a means to distribute the material within the
canister in predictable and somewhat homogeneous distribution.
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As an outgrowth of the need to both install and maintain a neutron poison in some degraded
standard canisters, the NSNFP embarked on a program that led to the development of a corrosion-
resistant material containing a highly effective, neutron poisoning material. This development has
provided an American Society for Testing and Materials (ASTM)-designated material.'® This alloy is now
also undergoing qualification as an American Society of Mechanical Engineers code-qualified material.
Preliminary testing appears to indicate the alloy has acceptable welding properties. In addition,
preliminary corrosion tests'” have also produced results indicating favorable properties to ensure retention
of gadolinium within the alloy.

3.1.5 Other Materials

Where criticality analyses have indicated a need to install neutron poisons for some canister
loadings, not all poisoning scenarios can be satisfied with the aforementioned C-4 alloy with 2 wt%
gadolinium. Both the amount of poison required and the necessary distribution within the loaded canister
cannot always be satisfied with a basket made of the C-4 + Gd alloy. An alternative material for
gadolinium installation in a package relied on bead materials containing gadolinium, either as a mix in the
material itself, or as a spray-coated material. Criticality analysis of the following fuels proposed the use of
poisoned beads:

. Fermi—Interstitial to the basket tubes; beads can be preloaded into the basket prior to fuel
loading.

. Shippingport LWBR seed—Added to the basket after fuel assembly loading; relies on some
movement of the bead material into the interstitial spaces between the fuel pins in the assembly.

. HFIR (outer)—Material in the center annular section and between some of the curved fuel plates
(if possible).

. Shippingport LWBR blankets—Inserts in the center and the periphery are needed to restrain the

fuel pins from moving.

. FFTF-MOX assemblies—Optional, but desirable to poison against individual pin expansion
within each poisoned basket compartment.

Use of poisoned beads provides additional assurance against a criticality through a more uniform
or homogeneous distribution of the poisoning throughout the fissile mass. However, their placement
inside the canister may require installation inside a hot cell, and verification of its installation is
problematic. As with any other material needed to provide poisoning, there are inevitable tradeoffs
between ensuring that the amount of poison needed can be distributed in the correct position to provide
effective poisoning. In addition, there is the inevitable tradeoff between weight added to a canister with a
defined weight limit and additional moderator exclusion.

3.2 Various Basket Designs

Conceptual basket designs were intended to satisfy a need for a specific fuel type within each
criticality group. The resultant criticality analyses were used to define a baseline fuel for each of the nine
criticality groups. Subsequent to this effort, these basket configurations are now being examined for their
usefulness in dealing with the packaging of the other fuels in the DOE inventory.

The use of a conceptual basket design denotes only the fact that dimensional considerations were
given to overall diameter and length, and plate or tube thicknesses needed to accommodate reported fuel
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dimensions. The design details, e.g., fabrication methods, remote handling features, tolerance stackups,
sleeve details, will be deferred to a design agency.

3.21 Aluminum Fuels

Aluminum fuels tend to be rather compact and highly enriched. The variety of shapes and sizes of
these fuels could, in a desire to maximize the fuel loads in any canister, generate an excessive number of
basket designs. In an effort to both standardize and minimize basket designs, a more generic design
approach was used. The final cross sections shown in Figure 5 depict on a relative scale how all of them
can use a Type la basket.

3.2.1.1 Basket Number Designator (ATR)—Type 1a. A scoping analysis identified the
suitability of packaging the cropped (48 in.) ATR elements in a ten per basket array and two baskets deep.
This proposed package loading resulted in a fissile load of 21.7 kg ***U per canister. The plates used to
form the basket compartments are 0.9525 cm (0.375 in.) thick and made from the C-4 + Gd alloy. The
bottom plate thickness can vary from 0.635 to 0.9525 c¢cm (0.25 to 0.375 in.) and may use a 304L stainless
steel.

ATR ORR

MIT Peach Bottom

03-GA51168-04c

Figure 5. Relative scale comparison of fuels that will fit into a Type 1a basket.
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3.2.1.2  Basket Number Designator (ORR)—Type 1b. This basket design is depicted in
Reference 18, but has since been supplanted by the conceptual design of the Type 1a basket. The length
of this basket design was originally expected to contain fuels of 27.0 in. (stacked four high = 108 in.) in
length as envisioned in the original aluminum fuel analysis. The original analysis promoted a 40 FHU
count canister loading with 13.9 kg U and required no poisoning. This analysis preceded the
preliminary design of the standard canister and the 101-in. usable length inside the standard 10-ft canister.
The ORR fuel loading now has a proposed derating of only 10 FHUs in three layers for a fissile mass load
of 10.410 kg *°U.

3.2.1.3  Basket Number Designator (MIT)—Type 1c. This basket design is also depicted in
Reference 18, but has since been supplanted by the conceptual design of the Type 1a basket. The length
of this basket design was originally expected to house fuels of 26.25 in. (stacked four high = 105 in.) in
length as envisioned in the original aluminum fuels analysis. The original analysis promoted a 64 FHU
count canister loading with 32.9 kg ***U and required poisoning. This analysis preceded the preliminary
design of the standard canister and the 101-in. usable length inside the standard 10-ft canister. The ORR
fuel loading now has a proposed derating of only 30 FHUs in three layers for a fissile mass load of
15.4275 kg **°U; poisoning can likely be satisfied with the quantity of fuel used in the Type 1a basket
because it is bounded by the higher fissile loading of the ATR fuels.

3.2.1.4  Basket Number Designator (Peach Bottom)—Type 1a. The basket intended for use
with the Peach Bottom graphite fuel (both Cores 1 and 2) will be a variant of the Type 1a fuel basket, but
without any installed base plate. Given the relatively low fissile loading in the canister (2.53 kg *U) in
comparison to the Ft. St. Vrain loading of 7.425 kg U, which is unpoisoned (based on analysis), no
poisoning appears to be needed for Peach Bottom. An early analysis (see Reference 18) indicated that
fissile loads in a standard canister without poisoning were possible with this fuel.

3.2.2 MCO (N-reactor and Single Pass)

The MCO is a singular design developed by Hanford to facilitate consolidation of the N-reactor
fuel assemblies. The development of the MCO was initially intended only to provide a compact,
dry-storage environment for the large quantities of N-reactor fuel in wet-storage. It was only after the fact
that efforts are now progressing toward developing acceptance criteria of these packaged fuels in the
MCO for repository disposal. There are currently two variants of the MCO. However, these differences
are related to the internals of the MCO itself and the number of stacked baskets within each MCO as
determined by the physical dimensions of both the Mark 1a and Mark IV fuels. The MCO concept is now
being evaluated for modification to accommodate the single-pass reactor elements.

The overall outer diameter (64.287 cm [25.310 in.]) exceeds the allowable canister dimensions
inside the proposed 5 x 1 codisposal waste package, so a special waste package has been designed to
accommodate the MCOs. The criticality analysis (see Reference 9) indicated that while three fully loaded
MCOs in a proposed most reactive environment can be maintained below the critical limit assigned to
DOE fuels (kefr <0.93), current packaging strategy for MCOs will use a 2 x 2 array of MCO and HLW
canisters in opposing locations to provide a balanced center of mass for the loaded waste package.
Adoption of this lower critical limit is significant because it is below the <0.98 limit used by Hanford
with respect to the U-metal fuels because of better critical benchmarks.

3.2.2.1 Basket—Mark 1A.The basket design (Figure 6) for the Mark 1A fuel uses a six-high
stacked basket design inside the MCO. The MCO basket designs included a basket for scrap material that
can be installed in either the top or bottom position in the MCO basket stack. Generally, the basket for
scrap material is only in one of those positions and then only with a 50% fill with debris. Most MCOs do
not contain a scrap basket.
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Figure 6. Fuel position layout for Mark 1A fuel in an MCO basket.

Preliminary analysis of the Mark 1A fuel assemblies, when packaged in MCOs, proved to create
the more reactive system when modeling for criticality compared to the Mark IV. On a comparative basis,
the Mark 1A FHU has a calculated atom density of ~2.11E-04 atoms/b-cm as opposed to 1.97E-04 for
Mark IV fuels because of the higher smeared enrichment (1.15%) used in MCNP modeling of the
Mark 1A fuels.

Each Mark 1A basket contains 48 N-reactor elements, and a loaded MCO can contain as much as
36.763 kg *°U in 288 elements. The assumed void fraction for these elements coupled with the close
packing in an MCO basket yields a calculated H/X ratio that is undermoderated by a factor of two.

3.2.2.1.1 Basket—Mark IV—The Mark IV baskets (Figure 7) use a variant of the Mark 1A
basket design in that they are taller so they can only be stacked five high in the MCO. This packing
arrangement installs 54 elements per basket, and a loaded MCO can contain as much as 40.915 kg *°U in
270 elements. This results in both a higher fissile load and higher fissile atom-density per MCO that is
11.3% greater than the baseline fuel. This calculated increase is offset by the lower enrichment (higher
#8U concentration) that makes criticality impossible with these MCOs for any feature, event, or process
associated with the repository. While an MCO loaded with the Mark IV fuel can contain up to two scrap
baskets at opposite ends of the MCO, most MCOs do not contain a scrap basket.

3.2.3 Type 3—Wheel/Spoke

The FFTF fuel constitutes the bulk of the fuel in the MOX fuel group. The fuel consists of fissile
#%Pu blended with either depleted or natural uranium. Linear fissile loading for the FETF fuel is biased on
the low side if determined by the length of the fuel element. While the fuel assemblies themselves are
3,657.6 mm (144 in.) long, the active length of fissile material is contained within a 91.44-mm (36-in.)
segment of the assembly.

Linear (fissile) loads for FFTF fuels are somewhat deceptive because typically it would assume
fissile distribution over the length of the canister internals. In reality, the fissile material exists within only
an approximate 3-ft length. Criticality analyses have always addressed the more highly concentrated
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Figure 7. Fuel position layout for Mark IV fuel in an MCO basket.

aspect of fissile concentration for these fuels. The linear loading of fissile material projected over the
length of the canister is approximately 118 g/cm. For comparison, this is significantly less than the fissile
linear loading in a canister of approximately 532 g/cm across five fuel assemblies.

One issue associated with these FHUs was the creation of IDENT 69s. These devices are separate
canisters that contain partially disassembled FFTF assemblies and individual fuel pins from assemblies
that had undergone postirradiation examination. The “wheel” in the wheel-and-spoke basket design (see
Figure 8) was specifically assigned to accommodate the IDENTS in the center position; driver fuel
assemblies would be inserted in the outer positions. Uncertainties associated with the fissile loads and pin
arrangements within any given IDENT required use of additional conservatisms in the criticality analysis
by optimizing the H/X ratio (see References 2 and 19).

Detailed criticality analysis evaluated the wheel-and-spoke basket for its ability to isolate
neutronically the individual elements from one another inside the basket compartments. While a poisoned
basket could provide some decrease in reactivity, it proved difficult to obtain a calculated k. that was less
than the established critical limit for this isotope without derating the canister. This was done by limiting
the installed FHUSs to either four driver fuel assemblies and one IDENT, or five driver fuel assemblies.
Such a loading can be enforced by blinding off one of the basket positions prior to canister insertion into
the fuel-loading cell. Other applications may be able to use all basket positions based on a specific
criticality analysis with that proposed load. Poisoning requirements identified in the criticality analysis
(see Reference 2) consisted of 9.29 kg gadolinium. Given more detailed information with respect to
IDENT container contents, subsequent criticality analyses (see Reference 3) identified a more substantial
poisoning requirement of 30.8 kg gadolinium per canister. Such a level of poisoning will require
installation of gadolinium in forms other than that which can be incorporated in the C-4+Gd alloy.
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Figure 8. Wheel-and-spoke basket (Type 3) for FFTF assemblies and IDENT-69s.

3.24 UZr/UMo (Fermi)

Fermi fuel packaging provides the highest fissile loading of any proposed pack configuration with
the DOE fuel inventory. The fuel consists of individual fuel pins that are each accounted for as individual
FHUs in the database. The individual pins originated from disassembly of the Fermi fuel. The pins are
loose-packed inside each can.

The fuel cans have an overall length that allows stacking fuel baskets (see Figure 9) two high
inside the standard 10-ft canister for a total of 24 fuel cans per canister. Criticality analysis demonstrated
that poisoning is required for the degraded condition. However, the amount of gadolinium that is needed
to ensure the calculated k. remains below the critical limit is in excess of that which can be incorporated
in the basket tubes alone. The approach identified for adding the extra poison was the addition of iron
beads with the necessary additional gadolinium in the interstitial space between tubes.

The beads can be preloaded into the basket and verified prior to placement of the fuel cans in the
basket tubes. This concept relies on eventual degradation of the iron to goethite, and its retention as
moderator exclusion material.

The summary criticality analysis report® identified the need for 14.5 kg of gadolinium phosphate
(GdPOy); this is equivalent to 9.04 kg of elemental gadolinium. The mass of the proposed basket tubes
and a 2 wt% gadolinium content can supply only 7.8 kg of the needed gadolinium mass. The final form
and composition of the beads has yet to be finalized. Yet use of the beads provides for a more uniform
distribution of gadolinium throughout the canister.

3.2.5 37 Tubes (TRIGA-FLIP)

Development of a basket concept for TRIGA fuels was unique in terms of the range of
enrichments encountered in this fuel group. Minimizing criticality risk for any proposed packaging of this
fuel category is further complicated by the presence of moderator (as a hydride) in the fuel matrix itself.

There was a variety of fuel types in terms of both fissile loads per FHU and enrichments, and
some differences in physical dimensions. The baseline fuel selected to develop the proposed basket
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Figure 9. Cross-section layout of a Type 4 basket for Fermi fuel.

concept (Figure 10) used the TRIGA-FLIP fuels with its 70% *°U enrichments. There is a surrogate fuel
known as TRIGA-FLIP (LEU) that has a slightly higher fissile mass but an enrichment of only 20%.
There is also a select number of TRIGA fuels with 90+% enrichment, but their fissile loading per FHU is
less than 20% of that contained in the baseline FHUs.

The criticality analysis (see Reference 8) for TRIGA fuel packaging identified the need to poison
a portion of each basket (at least 12 out of each 37 tubes at specific locations). Rather than risk the
consequence of the potential for a misload in a canister because of improper location or omission of one
or more poisoned tubes, future analyses and proposed configuration should plan on all tubes being
poisoned. On the basis of a maximal fissile loading of 15.20 kg **°U based on a full complement of
TRIGA-FLIP fuel, substitution of any other TRIGA fuel either intentionally or by accident will not
negate the baseline analysis for this fuel type. Further analysis for a dropped canister scenario (see
Reference 10) used “all tubes poisoned” to answer preclosure concerns relative to reconfiguration of
self-moderated fuels.

Basket dimensions, based on the two basic TRIGA fuel lengths, result in either two or three
stacked baskets inside a standard 10-ft canister.

3.2.6 Box or Cylinder

Several of the fuel shapes and sizes within the DOE fuel inventory have physical shapes and sizes
that allow only one FHU (Shippingport PWR and LWBR, TMI-2 debris canisters) or a small number of
stacked FHUs (HFIR outer). These items either need to be constrained at the time of loading, or they need
to be centered in the canister to minimize “rattle room” or prevent weight shifting during subsequent
movement of the canisters up to and including loading in a waste package.

None of these simplistic baskets require poisoning, nor would poisoned baskets on the outer
periphery of these elements provide any significant reduction in the calculated k.gunless homogenized
with degraded fuel.
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Figure 10. Cross-section layout for Type 5 basket for TRIGA fuel.

3.2.6.1

(Shippingport PWR)—Type 6. The Shippingport PWR baskets merely provide a

centering function for the installed assembly (see Figure 11). Specific to this fuel type, credit is taken for
the durability of the construction used in this fuel, and no poison was needed based on the criticality

analysis done to support this fuel. Other fuel that might employ this basket, where credit cannot be taken
for fuel durability, may require a supplemental criticality analysis with degradation for any proposed use

of this basket.

The void volume assumed for a Shippingport PWR assembly used a 50% value. Sensitivity to a
range of void volumes within the fuel assembly between 40 and 60% represents a change in the global
H/X ratio of approximately 1.6% over the entire canister void volume. It is the entire void volume of the
canister along with the hypothetical homogenization of the fissile mass for the Shippingport PWR fuel
assembly that results in a calculated value that is close to optimal moderation. A 10% change in the void
volume strictly within the bounds of the FHU itself yields a greater change in the calculated H/X ratio,
but reveals a significantly suboptimal moderation condition.

3.2.6.2

Basket Number Designator (HFIR-inner)—Type 6a. HFIR inner assemblies have yet

to be analyzed in any SNF canister configuration. However, based on the *°U loading in each of the inner
assemblies (1.84 kg), there is no expected need for poisoning based on similar linear nonpoisoned, fissile
loadings. Adaptation of this basket design to the TMI-2 canisters (3% enrichment) also did not require

poisoning.

The basket design proposed for this particular fuel assembly resembles that used for the TMI
containers, although it may use a slightly smaller pipe diameter. The principal purpose of any basket is to
facilitate loading and positioning the fuel inside an SNF canister. Figure 12 provides a preliminary layout
and physical dimensions of the proposed basket insert.

3.2.6.3

Basket Number Designator (HFIR Outer)—Type 6b. HFIR outer assemblies

dimensionally exceed ever so slightly the inner diameter of the 18-in. standard canister. The alternative
approach to disposal for these assemblies is their installation in a centering-sleeve inside the 24-in.
standard canister. This center sleeve has been analyzed based on a 0.5-in. thick, 20-in. O.D. carbon steel
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Figure 11. Cross-section for a Type 6 basket.
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Figure 12. Type 6a basket for HFIR (inner) and TMI-2.
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Figure 13. Cross-section of a Type 6b basket—HFIR (outer).

pipe section (see Reference 14). There would be small standoffs (four to six) of 1/2-in. thickness to center
this sleeve within the SNF canister.

Gadolinium poisoning with some type of granular material is needed to (a) exclude moderator
from the center (void) portion of the assembly and (b) reduce the interaction between the fissile atoms
both in place and when repositioned radially because of the potential for collapse into the internal (center)
void of the HFIR outer assembly.

3.2.7 Rectangle (Shippingport LWBR Seed)

The Shippingport seed assemblies for the LWBR fuel have a hexagonal cross section.”' Rather
than create a specialized hexagonal basket specific only to the LWBR assemblies, a more generic
rectangular basket design was used in the analysis. The cross-section dimensions of this Type 6¢ basket
are shown in Figure 14. The intention of this basket was to provide centering of the assembly inside the
canister. The design with respect to the fuel assembly allows for some expansion of the fuel pins in one or
more of the degraded conditions. Based on the criticality analysis (see Reference 7), such a degradation
scenario requires a small degree of poisoning interstitial to the rods. This analysis used the concept of
adding poisoned beads to the basket after the fuel assembly was installed and relied on at least a portion
of the beads infiltrating the pins upon degradation of the assembly.

3.2.8 Quadrant Type 7

The Type 7 basket design (Figure 15) is an unproven concept because there has been no specific
fuel analyzed for this particular configuration. Neither the basket thickness nor composition (poisoned or
not) has been analyzed. Such a concept would be reserved for those fuels with physical sizes too large for
any of the baskets with smaller compartments (Type 1a, Type 3, Type 4, Type 5) or larger compartments
that would yield suboptimal loading. As always, such a design would have to be analyzed for criticality risk
for the intact cases and compared against linear fissile loadings of other canisters. Typically, this canister
would be reserved for either low-enriched fuel, or those fuels with very low fissile loadings.
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Figure 15. Generic (unqualified) Type 7 basket for proposed HICs.
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4. BASELINE FUEL CHARACTERISTICS (SINGLE CANISTER)

The representative or baseline fuel selected for each criticality category led to the use of a canister
specific to what was considered to be the practical fissile load limit for that canister. Fuel dimensions
played a part in canister selection, knowing that the shorter fuels allowed more flexibility when
considering whether a long or short canister was used. Generally, the generation of both 10-ft and 15-ft
canisters needs to balance the quantity of 10-ft HLW canisters produced at West Valley and Savannah
River and the 15-ft HLW canisters expected out of Hanford.

Certainly the longer canisters will be dedicated for the packaging of the longer fuels. Fuels with a
length less than ~100 in. are certainly candidates for packaging in the shorter canisters. As the individual
elements get shorter, there is more flexibility in the decision process as to which length canister can be
used for packaging.

41 UAI

The original aluminum fuel analyses considered and evaluated direct disposal as an option that
predated many of the concepts that were subsequently applied to the other DOE fuels. Issuance of fuel
characteristics reports and application of a standardized criticality methodology (see Reference 1) were an
outgrowth of these initial efforts. Development and adoption of a standard canister approach to fuel
packaging also evolved as a result of this initial effort.

411 ATR

ATR fuel elements (see Figure 16) are currently the proposed packaging array of 10 fuel elements
per basket and two stacked baskets inside a standard 10-ft canister. This results in a fissile mass load of
21.7 kg *°U per canister. Preliminary analyses indicate gadolinium poisoning is required for this
proposed configuration (see Reference 14); subsequent analyses are underway to validate the proposed
fissile loads and poisoning schemes. The ATR elements are curved plates with a >*U BOL loading of
approximately 1,085 g per element. A calculated void fraction of the fuel of 0.4886 is well within the
range of 0.40-0.60 generally assumed for this type of fuel.

Many of the other fuels in this category are smaller in terms of both length and cross section, so
will load very well in the 10-compartment basket proposed for ATR, even though the baskets may end up
being stacked three or four deep in the standard canister. Almost all the proposed fissile loads result in a
fissile loading (on a per canister basis) that is less than 50% of the baseline value. Given a common
diameter for all canisters, the linear loading corresponds to the same percentage below baseline values
given for fissile loadings.

41.2 MIT and ORR

Initially, MIT and ORR fuels were the primary fuel of interest in this fuel matrix category. The
resultant analysis was based on SNF canister dimensions that predated design details of the standard
canister. Furthermore, while the proposed packaging maximized fuel loads in the canister, both the
complexity of the basket design and needed dimensional tolerances preclude the use of these early
designs. Consequential plans to treat these fuels in a melt and dilute process led to the development and
analysis of a new, proposed fuel form for packaging. Continued funding for this approach for fuel
disposal was terminated, and management decisions directed revival of the direct disposal option of the
aluminum-based fuels.
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The original criticality analysis completed for this fuel occurred before development of the
standardized SNF canister. As a result, the analysis used a fuel configuration that stacked four baskets
internal to the SNF canister. However, this analysis made the assumption that the 10-ft canister had 10 ft
of usable length internal instead of the ~101 in. in the current design. As a result, the analysis completed
for four stacked baskets must be derated to three baskets, but using the same cross-section packing
arrangement for the fuels. The original analysis did not indicate a need for a poisoned basket for the ORR
fuels. Therefore, maintaining the same fissile linear loading in the canister but shortening the zone that
contains the fissile material should yield either the same or a slightly lower k.. At least for the 18-in.
SNF canisters, the “infinite” length of fuel in the canister, e.g., the length at which k. stops increasing
with increasing length, appears to be in the range of 5 to 6 ft based on other, informal calculations.

Reexamination of past analyses (see References 18 and 22) indicated a need to evaluate a more
flexible basket design to accommodate a greater number of fuels in this category. At some sacrifice to
packing densities (both MIT and ORR fuels and fissile mass), a generic basket design was promoted for
ATR fuel that resulted in a higher fissile loading (total and linear) within a standard canister.

4.2 U-Metal

U-metal fuels are dominated by N-reactor fuel (2,096.202 MTHM). One of the next largest
contributors to this fuel category consists of the single pass reactor fuels (3.32 MTHM) that are currently
slated for disposal in a modified MCO design. The physical size of each N-reactor fuel type is lost when
combined as a single entry in the SNF database.

4.21 N-reactor/Mark 1A

These fuels should be considered comparable to the Mark IV fuels because they were used in the
same reactor. However, on a reactivity basis they proved slightly more reactive in an MCO configuration,
so they ended up as the baseline fuel in this criticality category. While the fissile mass of a Mark 1A
assembly is slightly less than that of a corresponding Mark IV fuel (see Reference 11), that lesser mass is
offset by the increased enrichment (1.15% smeared versus 0.947% respectively).

The Mark 1A assemblies (see Figure 17) are inserted in baskets that are stacked six high with a
maximum of 288 assemblies. This load represents a BOL fissile mass of 36.763 kg *°U in an MCO for a
calculated fissile atom-density of 9.87E-05 atoms/b-cm. For purposes of comparison, fissile species in
Mark 1A fuels 10 years after discharge from the reactor with 12% ***Pu yielded reported masses of the
two fissile isotopes of interest as 8.41E+03 **°U and 1.76E+03 **°Pu grams per ton of unirradiated
material (see Reference 11).

4.2.2 N-reactor/Mark IV

The Mark IV assemblies (also Figure 17) are inserted in baskets that are stacked five high with a
maximum of 270 assemblies. This load represents a BOL fissile mass of 40.915 kg **°U in an MCO for a
calculated fissile atom-density of 1.10E-04 atoms/b-cm.

4.3 MOX (FFTF)

The FFTF fuels, which are used as the baseline fuel, constitute 90+% of the heavy metal mass for
this category. These fuel assemblies represent a unique problem in terms of minimizing criticality risk.
The intact assemblies (Figure 18) require the use of the 18-in., 15-ft canister, yet the active portion of
each assembly (Figure 20) is contained within a 3-ft segment. This concentration of >**Pu presents a
significant fissile linear loading (531.6 g/cm) versus 117.4 g/cm for intact fuels spread over the internal
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length of the loaded canister. The proposed packaging approach adopted a wheel-and-spoke configuration
for the basket. Yet even with gadolinium poisoning incorporated in or on the basket, the canister load had
to be derated such that only the equivalent of five FFTF assemblies could be loaded in the six positions
created by the basket.

Simplifying assumptions were made relative to the FHU displacement and void fraction assigned
to any FFTF assembly. Displaced volume used the cross-section of the assembly duct over the entire
length of the element, and there was an assumed void volume within the duct region of 50%. When
averaged into the total void fraction for a canister, the resultant H/X ratio for the canister calculates to a
value of ~260; this represents an undermoderated condition. For an even smaller volume, e.g., the fueled
portion of the assembly itself, that portion of the canister would be even further undermoderated.

44 UZr/lUMo (Fermi)

The proposed packaging strategy for the uranium zirconium/uranium molybdenum (UZr/UMo)
fuel resulted in an abnormally high fissile load per canister. The ability to package such a large fissile
mass (114.3 kg *°U) inside a single 10-ft canister resides with the derodding and canning of each Fermi
assembly inside small diameter cans. Such a configuration results in a substantially undermoderated
configuration. This lack of moderation inside the SNF canister is further enforced by the proposed
installation of poisoned bead material (yet to be developed) in the void space between the poisoned tubes
(see Reference 20).

The SNF database lists each individual Fermi pin (Figure 20) as a separate FHU (33.691 g/pin @
25.69% enrichment). There were 140 pins in each Fermi assembly, and these were subsequently packaged
140 pins per can upon derodding. Packaging for this fuel type was predicated on the use of existing cans
within the standard SNF canister.

Figure 21 depicts the equivalent of 140 pins inside the fuel can. In reality, the pins are randomly
arrayed inside the can, but the void volume inside the can and ultimately in the standard canisters remains
the same. The FHU displacement and void fraction calculations for the packaged Fermi cans inside an
SNF canister result in a calculated H/X ratio of ~65. This presents a significantly undermoderated
condition that is nearly a factor of 10 less than optimum moderation. In the repository environment,
perhaps a bigger concern would be the transport of fissile away from the waste package that could result
in a configuration that achieves both accumulation and optimum moderation away from any poisons.
Such a scenario could easily be shown as a very improbable event through a features/events/process
screening.

4.5 UZrH, (TRIGA-FLIP)

These fuels are unique within the DOE fuel inventory because they are self-moderated by virtue
of hydrogen incorporation in the fuel matrix as a hydride compound. There a number of variants in this
fuel design in terms of cladding, enrichment, and length (see Figure 22). The most reactive fuel within
this inventory set consists of the TRIGA-FLIP fuel at 70% enrichment.

The basic basket design (see Figure 23) for the bulk of all TRIGA fuel used a 37-position array
stacked three deep inside a 10-ft canister. There is one specialized fuel shape known as a fuel follower
control rod. The length of this element dictates a two-high basket stack inside a 10-ft canister.

An ongoing privatization effort involved with receipt and packaging of TRIGA fuel has proposed
the use of a two-high basket stack with TRIGA standard (20% enrichment) fuel. Each basket has a
proposed 54 positions per basket and minimal poisoning. A detailed criticality analysis of this proposed
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Figure 23. Conceptual canister for TRIGA fuels.

configuration is underway to evaluate the adequacy of the design because it deviates significantly from
the baseline fuel design. At present, there is no identified need to poison the TRIGA standard fuel, so any
needed poisoning for this fuel with its 20% enrichment remains to be determined.

A privatization contractor has proposed 54 standard pins per layer in two layers (108 total) as
opposed to 37 pins in each of three layers (111 total). Current 3 x 37 analysis with TRIGA-FLIP fuel can
deal with any combination of FLIP and standard fuel. The proposed (privatized) standard pin loading uses
a minimalist poisoning scheme. An accidental misload of even one TRIGA-FLIP fuel in the privatized
design basically invalidates the privatized analysis because it would cause a fissile increase above the
approved, fissile load limit for that particular canister configuration. The privatized analysis will have to
address the potential for an unintentional misload of a small number of FLIP fuels in each package.

4.6 HEU Oxide (Shippingport PWR)

The Shippingport PWR fuel (Figure 24) serves as the baseline fuel for this criticality category
because of its enrichment (93.15% BOL), the fissile mass per FHU (18.174 kg **°U), and its physical size.
Criticality analysis calculated a value that indicated the fuel could be disposed of safely without
poisoning. However, this unpoisoned approach is contingent on the maintenance of the fuel geometry for
this fuel.

Because of their size, many of the other fuels in this category end up in baskets other than the one
proposed (Type 6 basket) for this particular fuel. As an example, fuel in this particular category that might
use a Type 1a basket with poisoning (Al category) would rely on a baseline comparison to the ATR
fuels. Such an approach would allow the analyst to justify acceptance based on a degradation and
homogenization of perhaps a less durable fuel.
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4.6.1  HFIR (outer)

Fuel for the HFIR reactor suggests addressing its configuration specifically in this report because
of (1) the physical size and (2) the quantity of these fuels predicted by the year 2035. While not truly an
aluminum-based fuel, it is a HEU oxide fuel with aluminum cladding. Whether included in the aluminum
fuel or HEU oxide category, a special consideration needs to be given to this fuel because of its physical
diameter (see Figure 25). The HFIR outer assembly is unique in its construction through the use of an
annular design. The physical size of the outer assembly dictates its disposal inside a 24-in. canister.
Criticality analysis (see Reference 14) for the combination of annular construction and the void fraction
inside both the fuel assembly and inside a 24-in. canister indicated the need for some degree of
poisoning/moderator exclusion for the degraded case analysis.

4.6.2 HFIR (inner)

An inner assembly contains fissile material. When the inner assembly moves up and down inside
the outer assembly, it controls the criticality in the reactor. Its physical size can be accommodated in an
18-in. canister, but a criticality analysis is still needed. Projections based on stacking these assemblies
three high inside a Type 6a basket would yield a canister fissile load of 5.53 kg **°U. Instituting a
poisoning requirement for such a configuration would still have to be demonstrated with a detailed
analysis for at least the intact and flooded condition.

4.7 U/Th Oxide (Shippingport LWBR)

The Shippingport LWBR fuel (Figure 26) consists of a number of individual assemblies (see
Reference 20). The assemblies of interest include the seed assemblies (12), power flattening blankets
(three types; quantity of 12), and reflectors. The seed and power flattening blankets are the items of
interest from a disposal standpoint because of the quantity of fissile material in each assembly.

The seed assemblies will fit within a standard 18-in., 15-ft canister but not without some form of
poisoning. The concern with the seed assemblies is a degradation scenario that might promote a radial
redistribution of the pins from the hexagonal assembly to the void space within the proposed basket
compartment.

The power flattening blankets (three types) have a physical size approaching 23-in. and a fissile
loading >26 kg *’U. Based on an ongoing analysis, the power flattening blankets require a combination
of both constraints to avoid fuel pin expansion into the center of the assembly and the outer periphery
inside the canister, and poisoning to remain below the critical limit. The alternative to this particular fuel
is derodding the pins for installation in an 18-in. canister with better controls on fissile loading and
predictability on fissile material distributions within a degraded environment.

4.8 U/Th Carbide (Ft. St. Vrain)

The U/Th group consists mainly of fuels that used a mixture of **°U for fissions and ***Th for
incidental production of ***U. Both Ft. St. Vrain (see Figure 27) and Peach Bottom (see Figure 28) fuels
were based on heavy metal carbide granules coated with differing layers of pyrolytic graphite (and silicon
carbide in the case of Ft. St. Vrain fuel). Both reactors used various graphite designs to provide structure
to hold the granules in a matrix. Combined, both Peach Bottom and Ft. St. Vrain fuels represent 99.64%
of the MTHM contained in the carbide fuel category. There is one FFTF fuel assembly and a small
number of FFTF pins (103 total) where the fuel matrix is composed of a Pu/U carbide in metal cladding.
Because of the dissimilarity between these carbide fuels and the other fuels in Group 8, the commonality
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with the FFTF MOX fuels and their planned packaging, and the minimal amount as a fraction of either
the Group 8 carbides or Group 3 MOX fuels, these fuels will be packaged as MOX fuels.

Within the graphite/carbide fuel category, there is a calculated displacement of moderator by the
inert materials that make up the bulk of the fuel assemblies. The graphite used to make the structure
holding the fissile matrix is inert (not subject to degradation other than by combustion) but also porous to
moisture. The graphite can also act as a moderator such as was demonstrated by its use in the plutonium
production reactors; however, this degree of moderation is dwarfed when the fuels are flooded with water.

Critical limit for these carbide fuels has adopted a slightly more stringent calculated k¢ of 0.92
because of fewer benchmarks available for **°U as opposed to 0.93 for **U. For the Ft. St. Vrain fuel,
there was an allowance for a slight ingrowth of ***U that was assumed to offset any depletion (through
burnup) of *’U. The quantity of added **’U is more than offset by the assumption of 1,485 g **°U per
Ft. St. Vrain block (maximum) when the average BOL fissile composition per Ft. St. Vrain block is 575 g
U and a maximum reported value of 1,256.6 g.** Such a maximum fissile loading for Ft. St. Vrain fuel,
when coupled with moderator introduction into a breached SNF canister, provides for a more optimally
moderated system for the Ft. St. Vrain blocks. In other words, the calculated linear fissile loading for an
average canister is only 30% of the baseline analysis, and the H/X ratio is some 300—400% greater
(overmoderated) than analyzed. For the baseline Ft. St. Vrain configuration, no poison was needed to
remain below the imposed critical limit.

Fissile material loading in the Peach Bottom fuel in a standard canister is much less than
Ft. St. Vrain on both a per element basis (291 g for Core 1 assemblies and 249.6 g for Core 2) and for a
loaded canister basis for 10 fuel elements per canister. A privatization contract for DOE SNF fuel
packaging has proposed a loading of 10 Peach Bottom elements in a standard 15-ft canister. This would
result in a maximum fissile loading on a per canister basis of ~3 kg ***U, which is much less than the
7.425 kg U associated with Ft. St. Vrain fuel in a 15-ft canister. Calculated estimates of near-optimal
moderation for the Ft. St. Vrain fuel without the need for poisons appear to justify a similar nonpoisoned
approach for Peach Bottom fuel. Furthermore, using a 10-position storage basket for Peach Bottom fuel
promotes a significant increase in void space within the canister. When completely filled with water, this
leads to an overmoderated case some 400% greater than that experienced with the Ft. St. Vrain canister
fissile load when flooded. An optimally moderated criticality analysis of the Peach Bottom fuel would be
based on both less moderator and fissile material. Such a combination represents a fissile atom-density
that is less than the 35% of that for Ft. St. Vrain in a 15-ft canister.

While a Type 1a-1 basket can be used for these particular fuels, there is neither an indicated need
nor expectation that poisoning of the basket is required to maintain the calculated k.¢ below the critical
limit.

4.9 LEU Oxide (TMI-2)

This category of fuel is defined as basically commercial fuel (Figure 29) that for one reason or
another was placed in storage away from the originating reactor. As part of the totals, there is an expected
disposition path of bare fuels as commercial nuclear fuel assemblies (68.299 MTHM), TMI-2 debris
canisters in a defined basket design (81.768 MTHM), and other fuels for packaging in either HICs or as
bare elements in an other type basket (22.97 MTHM).

As a general simplification, intact fuel assemblies used an assumed 50% void fraction when
calculating void space for water inclusion that was used to calculate the H/X ratio. Individual rods or pins
were assigned a void fraction of 2%. If at some future time the configuration might get changed to a pin
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load into a HIC, it would be possible to model the HIC as an intact assembly and then calculate a void
fraction for the HIC.

Critical limits for the fuel shipped as bare assemblies for packaging at the repository should be
governed by the values assigned to commercial nuclear fuel packages at the repository. While
low-enriched fuels (<5%) are assumed to have more supportive benchmarks, any use of noncommercial
basket designs suggests application of the same critical limit value (ke <0.93) used for DOE fuels.

Fuel associated with the TMI-2 debris canisters is contained in one of three types of canisters (see
Figure 30). At the time of the TMI-2 core cleanup, debris removed from the reactor ended up mainly in
either the fuel (D designator) or knockout (K designator) canisters. The most heavily loaded canister from
a fissile standpoint (10.06 kg **°U) was one of the fuel canisters. However, the available void volume
inside that canister design was more constrained than for the knockout canister. Because the contents of
the canisters consisted of debris, the analysis modeled individual fuel pellets rather than zirconium clad
pins. Furthermore, the criticality analysis used the equivalent of a 3.00% enriched PWR assembly with
13.72 kg **°U (BOL) to account for any inbred **’Pu. Such a loading represented a fissile loading that was
~36% in excess of the maximum reported fissile load for any canister.
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410 HIC

Many of the fuels in the DOE inventory consist of postirradiation examination materials,
metallographic mounts, and irradiated targets that do not justify an individual standard canister for single
or a very small number of items. The NSNFP developed a concept of a HIC to contain the small parts and
pieces maintained in the fuel inventory. Use of HICs to dispose of such items does not have a high
priority in terms of further development, but the following information presents a general strategy for
employing this approach to small quantities of disrupted fissile material. There is no current, approved
HIC design, so individual loadings can only be speculative at this time.

Modeling a HIC would examine the contents of the HIC for a calculated maximum reactivity
based on the fissile load and an assumed distribution of fissile material within the HIC. In the case of
MEU or HEU materials, the most reactive condition is generally modeled as a homogeneous distribution.
Fissile loads composed of LEU material are generally modeled as heterogeneous mixtures. In either case,
the goal is to identify a generic HIC fissile loading which when placed into a yet-to-be-qualified canister
basket, can be loaded without consideration of adding neutron poisons.

Installation of HICs into a standard canister will require development of both sizes (length and
diameter) and allowable (generic) fissile loads based on criticality analyses. The diameter of the HIC will
define the basket dimensions in the standard canister. The goal of any criticality analysis will treat the
loaded HIC as an intact fuel assembly with an assumed void fraction internal to the HIC. The analysis
will then determine what maximum linear fissile load per HIC and for the SDC (multiple HICs in an
array) can be allowed without having to poison the SDC internals. Ideally, the HICs will be standardized
with respect to diameter but will be allowed length differences to facilitate loading or stacking within the
usable length of the SDCs (256.5 cm or 414.02 cm). There are currently no expectations of HIC designs
to accommodate loading in anything other than a conventional 18-in. SDC with an appropriate basket.

4.11 Hybrid Fuel Loadings

The intention of this report was never to identify a detailed canister count for all fuels other than
the fuels identified and analyzed in the baseline fuels. To do so would be overly prescriptive in terms of
trying to optimize SDC loads without considering operational constraints. Those operational constraints
may include issues relative to fuel availability, storage versus packaging location, and certification issues
as to fuel identification or confirmation of composition.

There are three types of hybrid packaging that might occur. Hybrid fuel packaging within a
criticality group is very likely. Assembling hybrid fuel packages with fuels from two or more criticality
groups may be possible. And a third form of hybrid packaging would allow the use of a qualified basket
from the aluminum group for graphite fuel packaging.

Partial or fractional basket loads can be rounded up to the next whole integer canister. Ideally, the
spreadsheet identifies the various parameters needed to minimize criticality risk. These parameters (total
fissile, enrichment, linear fissile loading, and H/X ratio) can be quantified to provide comparisons to other
fuels in a given group for that basket design. Then these combined or hybrid fuel loads may be used to
determine a possible maximum FHU count. Partial canister loads (without any hybrid mixing of fuels)
can be used to identify partial fills of a basket. These can be rounded up to the next integer SDC value and
added for a maximum total canister count within a category and across categories for the entire DOE SNF
inventory identified for repository disposal.
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5. FISSILE MATERIAL CALCULATIONS

Fissile loads for the various fuels encompass three significant fissile isotopes, i.e., >°U, *°U, and
*%Pu. Enrichments of the various fuels range from depleted to 100% in the case of **’U.

5.1 Fissile per FHU

All fissile material loads for the various FHUs would use a BOL value with a specified
enrichment. In some identified cases, the baseline fuels analyses used fissile loads in excess of BOL to
account for potential ingrowth of added fissile (***U in Shippingport LWBR and Ft. St. Vrain) or decay of
**Pu = **U and **Pu = **U in FFTF fuels.

Calculated values for individual FHUs are meaningful only for those fuels with physical
dimensions that limit them to a single FHU per canister (Shippingport PWR) or when they are stacked in
a single column, e.g., Ft. St. Vrain or HFIR fuels. Calculated values for fissile concentrations, such as
linear loading in g/cm or atom-densities (atoms/b-cm), offer a measure for comparing other fuels within a
given canister/basket combination.

As a caveat, the reader should understand that the fissile concentrations per canister are based on
a published or specified fissile loading per FHU. Such information provides a basis for operating a
nuclear reactor safely.

Curie quantities of fissile species that are found in the source term inventory report* provide
radionuclide inventories found in the source term templates created from ORIGEN runs and stored as
templates in the SNF database. The gram quantities of fissile materials associated with criticality analyses
are not expected to agree explicitly with the source term values, because in most cases fissile
concentrations were maximized or boosted to ensure a conservative approach in the analysis.

5.2 Fissile per Canister

A more realistic calculation for linear loading is based on the internal, usable length inside the
canister, which is divided into the total fissile mass. This is particularly important where the fuels are
small enough to allow side-by-side installation in what is essentially a fuel array created by the basket
positions. Such an analysis also accounts for the more distributed character of the fissile material within
the canister. Whether reporting the fissile mass in terms of linear loading (g/cm) or as an atom-density
(atom/b-cm), the calculation again provides a basis for comparison to acceptability against the baseline
fuel/basket combination.

5.3 Beginning-of-Life Versus End-of-Life

It has always been the position of the NSNFP to claim no credit for burnup for any of the DOE
fuels. While other documents might refer to burnup values of DOE fuels (see Reference 24), those
discussions relate only to establishment of curie (or source term) inventories for fission products. For the
baseline fuels analyzed in each criticality category, specific gram quantities of fissile material are used
rather than derived curie values used in the construction of burnup templates.

Much of the DOE fuel inventory consists of 90+% enriched materials, so little in-breeding of
other fissile isotopes can occur during reactor operation. As with any test or demonstration program, there
were specialized fuels intended to promote breeding of other fissile species. Specifically, the Ft. St. Vrain
fuel was intended to demonstrate a >*Th/**’U fuel cycle. The mechanism used to demonstrate this concept



DOE/SNF/REP-090 June 2004
Revision 0 Page 86 of 122

employed a binary particle system with both **Th carbide (fertile) and *°U carbide (fissile) particles. The
fissile uranium provided the fissionable mass, and the thorium would convert to **U by neutron
absorption while in the reactor. Ft. St. Vrain fuel block specifications indicated a baseline range of fissile
loadings, ranging from 131.4 to 1,256.61 g **°U per block (see Reference 23). The criticality analysis
ended up using 1,485 g U per block; only 7 of 2,208 Ft. St. Vrain blocks have a fissile loading
approaching this value.

5.4 Poisons

The need for neutron absorbing poisons has been identified for a select number of fuels within the
DOE inventory. The analyses demonstrated a need for some type of poison for some canisters based on
the proposed fissile load in a canister/basket combination and a degree of degradation and radial
redistribution of the fissile material within the canister.

Early analyses identified the need to not only include a poison, but also provide a mechanism to
install and retain the poison. Analysis dismissed boron as a poison because of its solubility and an
inability to ensure retention through the expected degradation inside a breached SDC. The chosen poison
evolved to a gadolinium phosphate because of its apparent insolubility (ensuring its retention). However,
the properties of the GdPO,4 compound were essentially unknown; a mechanism to install the poison was
problematic.

The NSNFP undertook development of a method to incorporate the poison in a package with
some degree of retention. This effort resulted in the development of a now ASTM-qualified alloy (see
Reference 15), consisting of a high-nickel C-4 alloy with 2% gadolinium incorporated in the metal matrix
for fuel basket construction. Yet even this loading does not ensure the necessary poison concentration for
all degraded cases.

A supplemental addition of poisons may be required in some cases through the use of poisoned
bead material that has yet to be developed. The development of this poisoned bead material has yet to be
formed in terms of an underlying substrate or how it can be reasonably installed within a remote or hot
cell environment.

The gadolinium poison turns out to be very effective in a totally thermal (fully flooded) regime.
Criticality analyses, which indicated a need for gadolinium poisoning, were all the result of degraded
fuels and the associated reconfiguration of fissile material that might occur inside a breached waste
package. Gadolinium poisoning is not a property of all packages due to a combination of either lower
fissile atom-densities or an inability to reconfigure fissile material upon degradation. The ratio of
gadolinium/fissile atoms within a defined geometry can offer a comparison for all other fuels in a
poisoned basket against the baseline fuel for that intended basket.
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6. CONCLUSIONS AND RECOMMENDATIONS

Use of proposed baskets has identified an approach to packaging DOE SNF in standardized
canisters for a number of baseline fuels within the nine identified criticality categories based on the fuel
matrix.

With very few exceptions, all other fuels within the inventory that would employ any of the
proposed basket designs generate fissile loads per canister that are less than the values reported in the
baseline analyses. The outgrowth of these lower fissile loads, sometimes because of lower gram quantities
or reduced enrichments, generally translates into decreases in parameters that contribute to minimized
criticality risk, i.e., lower atom-densities, lower linear loadings per canister. In other cases, the canister
may become significantly overmoderated, or the poison/fissile atom ratios are multiples to orders-of-
magnitude increases of those needed to minimize criticality risk.

Several of the baseline fuels require poisoning to minimize criticality risk for the degraded
conditions postulated in the event of an SDC breach in postclosure. Any poisoning requirement occurs
only for the degraded-case conditions for a select number of fuels. Application of a defined critical limit
for DOE fuels has generally applied a value of calculated k.<0.93 at least for the postclosure
(10,000 years). There is some expectation that these critical limits would be relaxed for the postclosure.
Yet all poisoning requirements are based on preclosure limits in spite of the fact that the degraded
conditions were found to occur only beyond the stipulated 10,000-year lifetime of the repository. The
fuels and their packaging configurations that required poisoning were:

. Aluminum—ypoison in the basket plates only

. MOX—poison in the basket plates; poisoned beads desirable
. TRIGA—poison in the basket plates only

. Fermi—poison in the basket tubes and poisoned beads

. HEU oxide—poison beads needed for HFIR outer assemblies
. U/Th oxide—poison beads needed.

Use of poisons is predicated on the breach of any waste package containing DOE fuels and a
subsequent breach of the SDC with the introduction of moderation. Credit has been taken for retention of
at least a portion of the gadolinium either as an insoluble material, such as gadolinium phosphate
(GdPOy), or being tied up in a corrosion resistant C-4 + Gd plate material. However for some fuels,
basket plates alone will not provide the necessary distribution of gadolinium within the degraded package.
Use of beads provides some degree of distribution in interstitial spaces where fuel plates or pins contain
significant quantities of fissile material. Identification of a specific bead form (material composition,
density, size, weight percent poison) will require development in the upcoming years prior to actual
packaging of those fuels requiring beads.

There are several types of fuels in the criticality groupings that require no poisoning inside a
standard canister. Certainly any fuels using the same packaging configuration with a lesser fissile loading
and associated decreased fissile atom-densities should be considered as bounded by the baseline fuel.
Calculated H/X ratios would have to be evaluated on a case-by-case basis to determine whether this ratio
is moving toward or away from optimal moderation compared to the baseline fuel. This approach should
allow for the acceptance of these similar packages with nothing more than a criticality analysis conducted
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at the time of packaging to verify that calculated k. for intact dry and flooded conditions for the SDC are
less than those found for the baseline fuel under similar conditions. Such an extrapolation avoids the need
for a costly degradation analysis for each SDC load configuration.

The other subset of fuels to be considered for SDC packaging requires some degree or form of
poisoning. These baseline fuels bound the proposed fissile loadings. All other fuels using a poisoned
basket/bead combination certainly need to be analyzed for the intact condition, both dry and wet. Yet for
the same degree of poisoning in a given basket, but with a lowered fissile atom-density, a criticality
analysis might be limited to the intact conditions at the time of loading and a demonstration of a
calculated k. that is less than the baseline fuel.

In cases across all fuel categories for criticality, use of poisoned baskets for one fuel group should
be considered adequate for other fuels outside the original group. This is true if: (1) the criticality
calculations for the intact analyses (both dry and flooded) demonstrate a lowered k. when compared to
the baseline fuel used as a basis for that particular poisoned basket design and (2) both the fissile
atom-densities are lower and the Gd/X ratios are higher. Ultimately, while it may save money by having
both poisoned and unpoisoned baskets of the same design, adoption of such an approach is fraught with
many shortcomings. The greatest concern would be the possibility of misloading a canister and
nonpoisoned basket with a single fuel handling unit that causes the fissile loading to exceed the basis fuel
load.

A primary example of such an event would be the analysis of an unpoisoned basket for TRIGA
standard fuel (total fissile: 4.33 kg ***U) and then inserting a TRIGA-FLIP fuel in just one of the
111 basket positions within an SDC. Conversely, the risk of using a completely unpoisoned basket for
intentionally loading TRIGA-FLIP fuels completely invalidates any previous analysis (total fissile:
15.20 kg **°U). Ideally, if all TRIGA baskets were poisoned to the same degree, TRIGA fuel of the same
length could go in any TRIGA basket design for that length regardless of the fissile loading in the FHU. It
could even prove advantageous to blend TRIGA-FLIP with TRIGA standard fuels in the canister as this
would result in a derated fuel loading when compared against the TRIGA-FLIP baseline analysis. Such a
loading strategy would also guard against any concern regarding the inevitability of a misloading at the
time of fuel loading in a basket/canister.

6.1 Future Activities

There are several future activities that need to be accomplished in support of packaging DOE fuel
in standard canisters. First and foremost is completion of information needed to calculate either the type
of basket need or fissile concentrations of some of the fuel. The need for this information is reflected with
the TBD values interspersed throughout the Appendix A spreadsheets.

In addition, given the selection of a basket and a poisoning scheme, it would be possible to start
formulating hybrid packaging both within a given criticality category, but also blending fuels across
categories. This blending of fuel units could occur where cross-section and length are similar enough to
use the same basket. In retrospect, the blending of fuels needs to be proven acceptable. All previous
degradation analyses that solubilized the fissile material did so regardless of the fuel matrix that in turn
was the basis for the initial segregation of DOE fuels in the nine categories.

Adoption of the goal to promote hybrid fuel packaging would require development of a templated
basket design in an MCNP. Subsequent analysis of various fuel combinations, at least intact fuel
conditions, could then examine the net effect on basket/canister reactivity by mixing and matching fuels
among the various basket compartments. One underlying concern is the effect single, more highly loaded
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FHU might have on calculated reactivity. For the intact condition, this reactivity effect would be
relatively easy to calculate. A possible shortcoming of any proposed hybrid fuel loading must examine
whether a single FHU with a lower fissile mass (but with a higher atom-density per FHU volume, or
substantially different degradation properties because of cladding differences) might not contribute to an
expected, lower reactivity. Development of the template model needs to address the methodology to
evaluate the contribution or relationship in reactivity differences between fuel types in a basket/canister
environment.

Quantities of gadolinium alloy material which is needed to provide poisoned baskets and beads
can be projected from canister count estimates and the type of basket needed to accommodate fuel
packaging. In addition, canister estimates can be identified by site if fuel storage locations are added to
the information present in Appendix A. This information can further be used to segregate canister counts
for facility sizing and timing required to establish queuing canisters and support deliveries of standard
canisters to the repository.

Acceptance of the conceptual basket designs and the proposed approach to packaging fuels can be
used to support detailed basket designs and the remote handling operations needed to support loading
fuels in the various canisters and baskets. Detailed design of baskets will allow mockup and remote trials
for fuel loading in baskets and develop remote operations with stacked-basket installation.

Appendix A of this report itemizes the information by fuel type and then by basket size to
examine hybrid fuel packages within a group and across groups for fuels with common basket design
requirements. This could provide added impetus to suggest use of a standard approach for those fuels
using poisoned basket designs and thereby avoid any misloading of fissile content, i.e., if a baseline fuel
were to be mixed into a nonpoisoned basket loading.
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(Nine Fuel Groups)
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Appendix A

Proposed Fissile Loading for Standard Disposal Canisters
(Nine Fuel Groups)

The type of fuel for each criticality fuel group segregates the following tables in this appendix. In
each table found in this appendix is a condensation of the tabular information and calculations used to
determine linear loadings, canister basket selection, H/X ratios, etc. The full spreadsheet with all the
attendant fields, formulas/calculations, notations, and generic reference information is included in the CD,
which is attached to this report.

Information from Version 5.0.1 of the National Spent Fuel Database (NSFDB) was used to
populate the fields that were needed to support any subsequent calculations. Generally, this information
from the database included basic properties of the fuels such as fissile/fuel handling unit (FHU),
enrichments, isotope species, total uranium, FHU count, and dimensional FHU information. While only
the summary sheets for each fuel in the nine criticality categories are presented in the following index, the
full spreadsheet for each fuel category can be found in the attached CD. Table A-1 is a listing of the
corresponding spreadsheets found on the attached CD. The summary spreadsheets are a condensed
(hidden columns) version of the full spreadsheets.

Several items of this information are worth noting. The full table lists both beginning-of-life
(BOL) fissile where known, and end-of-life (EOL) as a fixed, known value that should agree with
reported NMMISS (Nuclear Materials Management Information Safeguards & Security) data. Criticality
analysis for DOE fuel always uses BOL (as a minimum), or BOL + conservatism for calculations that
used in-breed fissile material (adding *’U to Ft. St. Vrain BOL *°U is a primary example). There are no
plans to claim credit for any of the burnup in the Ft. St. Vrain fuels.

Table A-1. Worksheet listing.

Full Worksheet Summary Worksheet Notes
1-UAIx Alum sum
2-U metal Umetal sum
3-MOX MOX sum
4-UZr-UMo UMo sum
5-UZrHx UZrHx sum
6-HEU oxide HEUox sum
7-U-Th oxide UTHox sum
8-U-Th carbide Carbide sum
9-LEU oxide LEUox sum
Other Worksheets
Concentrate H/X ratio conversions
Canister # Summary of # of canisters generated
MTHM summary MTHM and volumes by crit category
Baskets Appendix C tabular information
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The geometric shape reported in this spreadsheet may differ from the reported callout in the
database. Whether reported as a pin, rod, or cylinder is of no particular significance other than knowing
the cross-section dimension when selecting a basket in which to position the FHU. An example is the
identification of each Fermi fuel pin as a distinct FHU. The individual pins are stored in cans (140 pins in
each) that were associated with each derodded assembly. The assumption made for packaging in the
standard SNF canister for the repository used the existing storage cans for insertion into the canister
basket. This packaging approach may change depending on the ability to confirm the absence of water in
all these cans at the time of packaging.

Those parameters considered important to establishing fuel packaging within a canister, i.¢.,
linear loading, enrichment of fissile species, total fissile mass per canister, and H/X ratio, are calculated in
this spreadsheet. None of these parameters are absolutes, but offer packaging guidance in terms of
reference values for which other fuels can be compared. Linear loading was calculated by distribution of
the fissile mass over the usable length inside the SNF canister, e.g., 101 in. for the standard canister that
was 18 in. in diameter and 10 ft long. Such an assumption tends to artificially spread or distribute the
fissile material within any loaded canister because no single element or stacked combination of elements
takes up exactly 101 inches. Enrichment of the fissile species in the baseline fuels is a fixed value and
usually the highest within a criticality group; this approach allows a relative comparison between other
fuels in each group when need.

Determination of the void volume of the individual FHUs was an estimate based on whether there
were plate or pin arrays in a fuel assembly; in that case, a void fraction of 50% was applied. In the case of
solid bodies such as TRIGA fuel pins, an allowance of 2% void space was applied. Basket displacement
volumes were calculated based on plate or tube dimensions. These displaced volumes were used to
calculate the void space within an SNF canister for each type fuel specific to the basket used for that fuel
for the volume between the impact plates inside the canister.

Reference documents listed at the bottom of each worksheet were not used so much for reference
as to list bibliographic information that contains materials relating to graphite/carbide fuels. These
reference documents contain fuel information in details much greater than that available in the NSFDB.
Additional criticality analyses for other fuels in this group may further support the baseline analyses.

There are several abbreviations used to fill in certain cells. In some cases, data are either not
reported or not available from the database. In particular, one of the most important pieces of missing data
is dimensional information on many of the single items thought to be scraps, postirradiation examination
samples, metallurgical mounts, or test items. The absence of this data is not a reflection on the database
itself. It is a reflection of the lack of importance placed on documenting such information at the time of
transfer to storage because record keeping at this level of detail was considered nonessential given that a
disposal path was never considered.

The following abbreviations and symbols are used in the tables.

n

- - -"—information not reported or contained in the SNF database, or information that is not necessarily
pertinent to the calculations.

NR—not reported (or not available); this is generally a value that is needed to determine a fissile loading
or aid in basket selection before qualification of packaging can proceed.

TBD—to be determined; values that are calculated from the NR information (see above).
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The tabular information contained in Tables A-2 Through A-10 can be used to generate a
summary of the various size canisters (Table A-1) by fuel category based on information currently
available. This canister count represents an expected maximum based on the facts (1) there was no
canister consolidation attempted, so integer canister counts were rounded up for any partial basket, and
(2) the number of yet to be determined canisters is small because the identified FHUs are generally scrap
or remnants pieces with low counts.

Table A-2. Canister count summary.

18-in. 24-in.
Fuel Category Fuel Type 10-ft 15-ft 10-ft  15-ft MCO

Alum 1 1226 1 --- ---

Metal 2 16 4 --- --- 440
MOX 3 5 61 - - S
Fermi 4 14 19 --- - R
TRIGA 5 165° --- - - S
HEU oxide 6 489 42 166" --- ---
U/Th oxide 7 20 12 - 61 ---
U/Th carbide 8 --- 605 --- --- -
LEU oxide 9 8 344 --- - .

Subtotals 1943 1088 166 61 440 3698 <total

a. Does not reflect TRIGA fuel consolidation; could be as few as 72.
b. HFIR outer elements.
c. Dresden and LWBR power flattening blanket.
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